下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、开县德阳中学初三(下)备战中考2012专题十六: 几何图形计算与证明班级姓名条件:有平分线+有垂直?1. 如图,设 BP、 CQ 是 ABC 的内角平分线, AH 、AK 分别为 A 到BP、 CQ 的垂线, BAC =80 , CQ、 BP 相交于点O.( 1)求 KAH 的度数 .( 2)求证: KH= 1(AB+AC-BC )A2QPKHOBC学习必备欢迎下载条件:有平行、有中点?3. 已知:如图,过ABC 的顶点 A ,在 A 内任引一射线,过B、 C5. 在矩形 ABCD 中, BAD 的平分线交直线BC 于点 E,交直线 DC作此射线的垂线 BP 和 CQ。设 M为于点 F, G
2、是 EF 的中点,且AD=5 ,DC=3.BC 的中点。( 1)求 AG 的长度。求证: MP MQ( 2)求证: BD2DG在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)?6. 如图,在梯形ABCD 中, AD BC , A= 90条件:有对角线2 呢?为 AB 的中点,过点 E 作 EG CD 于点 G,延长, AB=BC=2AD ,点 E EG、AD 相交于点 F,2. 已知:如图 6 所示在 ABC 中,平分线 AD 、 CE 相交于 O.求证: AC AE CD.AB 60 , BAC 、 BCA 的角BEDOC4.如图,正方形 ABCD 中,E 是对角
3、线BD上一点,过点 E 作 EF CE连接 BG.交AB于点F.( 1)求证: EF=CD.A(1) 若 BF=2, BC =6, 求 FE 的长;AD( 2)求证: F= BGE.(2求证: BE2BF DE .EEFBBCDFGC学习必备欢迎下载7. 延长一较短线段, 使延长部分等于另一较短线段, 则两较短线段成为一条线段,证明该线段等于较长线段。 (补短法)例 6.已知:如图7 所示,正方形ABCD 中, F 在 DC 上, E 在 BC9. (1) 如图 1,在四边形 ABCD中, AB AD, B D 90°, E、 F 分别是边 BC、 CD上的点,且 EAF= 1 BA
4、D.求证 : EF BE FD;210. 已知:如图 10, L 是过平行四边形ABCD的顶点 A 的直线,DD'、BB' 、CC'分别垂直于直线 L,垂足为 D'、B'、C' 。求证: CC'DD' BB'。上,EAF45 .求证: EFBE DFAD312FGB EC图7ADBFEC(2) 如图 2 在四边形 ABCD中, AB AD, B+ D 180°, E、F 分别是边 BC、CD上的点, 且 EAF= 1 BAD, (1) 中的结论是否仍然成立?2不用证明 .(3) 如图 3,在四边形 ABCD中,
5、AB AD, B+ ADC 180°, E、F 分别是边BC、 CD 延长线上的点,且EAF= 1 BAD, (1)中的结论是否2提示:(证法一:过点B 作 BE CC,垂足为E。)(证法二:连结 AC和 BD,相交于点 O,过点足为点 F。)DAD'O作 OF AC,垂CBLB' C'8.矩形ABCD中,点E 是 AD的一点,连接BE, 且 BE=BC ,EBC =45 , CF BE 于点 F. O 为 AC 的中点 , AB =2.(1) 求 OB 的长.(2) 求证: DE+BF=BC.AEDFOBC仍然成立?若成立,请证明;若不成立, 请写出它们之间的数量关系,并证明 .11. 四边形 ABCD 中, ABCB ,ABC 60 , ADC 120 ,请你猜想线段 DA 、 DC 之和与线段 BD 的数量关系,并证明你的结论;(2) 如图 2,四边形 ABCD 中, ABBC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度品牌形象设计与包装推广合同3篇
- 贵州员工劳动合同书标准版
- 2024年度影视制作、发行与版权转让合同2篇
- 企业培训机构培训合同范本合同范本
- 消防设备购销协议书
- 门面店营业执照变更合同(2024版)
- 货物购销合同完整版3篇
- 公司门卫协议书范文标准版
- 机器买卖合同范本3篇
- 材料购销合同范本
- 2024年工程制图教案发展趋势预测
- 统编版语文六年级上册-27我的伯父鲁迅先生-教学课件多篇
- 2024年创意市集承办协议
- 英语演讲技巧与实训学习通超星期末考试答案章节答案2024年
- 中国锂电池及其负极材料回收再利用行业市场深度调研及竞争格局与投融资研究报告(2024-2030版)
- 广东省广州市天河区2024-2025学年八年级上学期语文期中测试卷(含解析)
- 2023年贵州省贵阳市公安局公务员考试《行政职业能力测验》历年真题及详解
- 营养专科护士总结汇报
- 2024秋期国家开放大学专科《宪法学》一平台在线形考(形考作业1至4)试题及答案
- 乒乓球女单世界第一首位零零后孙颖莎介绍课件
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论