下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2019-2020年高二数学上 8.1向量的坐标表示及其运算教案(2)(沪教版)一、教学内容分析向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是8.1向量的坐标及其运算的第二课时,一方面把“形”与 “数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为下节课定比分点(三点共线)的教学提供基础.二、教学目标设计1掌握向量模的求法,知道模的几何意义;2理解并掌握两个非零向量平行的充要条件,巩
2、固加深充要条件的证明方式;3会用平行的充要条件解决点共线问题;4感悟向量作为工具解题的优越性.三、教学重点及难点课本例5的演绎证明;分类思想,数形结合思想在解决问题时的运用;特殊一般特殊的探究问题意识.问题一引入四、教学流程设计向量平行的充要条件三点共线的充要条件问题二解决问题三解决课堂小结作业反思,形成问题创设问题情景问题探究反思知识拓展应用课外探索学习模的求法五、教学过程设计 创设问题情景问题一、已知向量.(1)在坐标平面上,画出向量;并求= ;(2)若向量终点Q坐标为,则向量的始点P坐标为_;(3)向量的模与两点P、Q间距离关系是 .若 ,则练习1:已知向量,求说明 在问题一中,先给出向
3、量,要求学生在坐标平面上画出向量,增强数形结合的解题意识,感悟向量的模即平面上两点的距离.由此发现并掌握向量模的求法及几何意义.安排(2)小问的目的在于复习巩固位置向量与自由向量的概念,体会并感悟到任何一个自由向量都可转化为位置向量.通过自由向量与位置向量的学习,引出向量平行的概念.向量平行的概念:对任意两个向量,若存在一个常数,使得成立,则两向量与向量平行,记为:.问题探究反思问题二.在坐标平面上描出下列三点,完成下列问题:(1)请把下列向量的坐标与模填在表格内:向量坐标(1,2)(2,4)(3,6)向量的模(2)通过画图,你得出什么结论?三点A、B、C在一条直线上(3)分析表格中向量的模,
4、你发现了什么? (4)分析表格中向量,你还发现了什么?,说明 养成解题后反思的习惯,总结如何判断三点共线?方法一:计算三个向量的模长关系.方法二:看两个非零向量之间是否存在非零常数.(5)分析表格中向量坐标,你又发现了什么?向量坐标之间存在比例关系.思考:如果向量用坐标表示为,则是的( )条件.A、充要 B、必要不充分 C、充分不必要 D、既不充分也不必要由此,通过改进引出课本例5 若是两个非零向量,且,则的充要条件是.分析:代数证明的方法与技巧,严密、严谨.证明:分两步证明,()先证必要性:非零向量存在非零实数,使得,即,化简整理可得:,消去即得()再证充分性:(1)若,则、全不为零,显然有
5、,即(2)若,则、中至少有两个为零.如果,则由是非零向量得出一定有,又由是非零向量得出,从而,此时存在使,即如果,则有,同理可证综上,当时,总有所以,命题得证.说明 本题是一典型的代数证明,推理严密,层次清楚,要求较高,是培养数学思维能力的良好范例.练习2:1已知向量,且,则x为_;2设=(x1,y1),=(x2,y2),则下列与共线的充要条件的有( ) 存在一个实数,使=或=; ;(+)/()A、0个 B、1个 C、2个 D、3个3设为单位向量,有以下三个命题:(1)若为平面内的某个向量,则;(2)若与平行,则;(3)若与平行且,则.上述命题中,其中假命题的序号为 ;说明 安排此组练习快速巩
6、固所学基础知识,当堂消化,及时反馈.知识拓展应用问题三:已知向量,且A、B、C三点共线,则k=_ (学生讨论与分析)说明 三点共线的证明方法总结:法一:利用向量的模的等量关系法二:若A、B、C三点满足,则A、B、C三点共线.*法三:若A、B、C三点满足,当时,A、B、C三点共线.课外探索学习课外作业:1练习册P38:4、5、6、7补充作业:1关于非零向量和,有下列四个命题:(1)“”的充要条件是“和的方向相同”;(2)“” 的充要条件是“和的方向相反”;(3)“” 的充要条件是“和有相等的模”;(4)“” 的充要条件是“和的方向相同”;其中真命题的个数是 ( )A 1 B. 2 C. 3 D. 42质点P在平面上作匀速直线运动,速度向量=(4,3)(即点P的运动方向与相同,且每秒移动的距离为|v|个单位.设开始时点P的坐标为(10,10),则5秒后该质点P的坐标为( )A(2,4)B(30,25)C(10,5)D(5,10)3已知向量,则的最大值为 .4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度某创业公司与孵化器之间的孵化服务合同
- 2024年度玛雅房屋租赁合同问答
- 2024年度家居用品物流配送合同
- 2024年度房屋买卖合同-房产交易与产权转移
- 2024年度住宅装修工程保险合同
- 2024年度智能化控制系统安装工程合同
- 2024年度建筑工程拆除安全外包服务合同
- 2024年度无人机研发与应用服务合同
- 2024年度国际货物买卖与信用证合同
- 2024年度滨湖菊园园林景观改造设计合同
- 骆驼的抗沙标配(2020新疆中考说明文阅读试题含答案)
- 铁路客运员(初级)理论考试复习题库汇总(含答案)
- 银行信贷业务中的法律风险防范与控制
- 高中化学-探究亚铁盐和铁盐的性质及转化教学设计学情分析教材分析课后反思
- 空气压缩机技术规范标准
- 2023届高考写作指导:“奋斗的青春最美丽”作文讲评课件
- 项目竣工环保验收房地产验收报告
- 有机合成化学(山东联盟)知到章节答案智慧树2023年青岛科技大学
- 国家有关安全生产的方针政策法律法规
- 高一日语开班宣讲课件
- 新人教版九年级上册初三化学全册课件PPT(精心整理汇编)
评论
0/150
提交评论