![高中数学—4(坐标系与参数方程)知识点总结_1521_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/16/8f01b318-ffcc-474e-bbd8-81db7ad065e4/8f01b318-ffcc-474e-bbd8-81db7ad065e41.gif)
![高中数学—4(坐标系与参数方程)知识点总结_1521_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/16/8f01b318-ffcc-474e-bbd8-81db7ad065e4/8f01b318-ffcc-474e-bbd8-81db7ad065e42.gif)
![高中数学—4(坐标系与参数方程)知识点总结_1521_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/16/8f01b318-ffcc-474e-bbd8-81db7ad065e4/8f01b318-ffcc-474e-bbd8-81db7ad065e43.gif)
![高中数学—4(坐标系与参数方程)知识点总结_1521_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/16/8f01b318-ffcc-474e-bbd8-81db7ad065e4/8f01b318-ffcc-474e-bbd8-81db7ad065e44.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、坐标系与参数方程知识点1平面直角坐标系中的坐标伸缩变换设 点P(x,y)是 平 面 直 角 坐 标 系 中 的 任 意 一 点 ,在 变 换xx(0 )对应到点 P (x , y ) , 称:y(的作用下 , 点 P(x,y)为y0 )平面直角坐标系中的坐标伸缩变换, 简称伸缩变换.2. 极坐标系的概念(1) 极坐标系如图所示 , 在平面内取一个定点 O , 叫做极点 , 自极点 O 引一条射线 Ox , 叫做极轴 ; 再选定一个长度单位 , 一个角度单位 ( 通常取弧度 ) 及其正方向 ( 通常取逆时针方向 ), 这样就建立了一个极坐标系 .注 : 极坐标系以角这一平面图形为几何背景 , 而
2、平面直角坐标系以互相垂直的两条数轴为几何背景 ; 平面直角坐标系内的点与坐标能建立一一对应的关系 , 而极坐标系则不可 . 但极坐标系和平面直角坐标系都是平面坐标系.(2) 极坐标:设 M是平面内一点 , 极点 O 与点 M的距离 |OM| 叫做点 M的极径 ,记为; 以极轴 Ox 为始边 , 射线 OM 为终边的角xOM 叫做点 M的极角 ,记为.有序数对 (,)叫做点 M的极坐标 ,记作 M(, ).一般地 , 不作特殊说明时, 我们认为0,可取任意实数 .特别地 , 当点 M 在极点时 , 它的极坐标为(0,)( R). 和直角坐标不同 , 平面内一个点的极坐标有无数种表示.如果规定0,
3、02, 那么除极点外, 平面内的点可用唯一的极坐标 (,) 表示 ; 同时 , 极坐标 (,) 表示的点也是唯一确定的.3. 极坐标和直角坐标的互化(1) 互化背景 : 把直角坐标系的原点作为极点 ,x 轴的正半轴作为极轴 ,并在两种坐标系中取相同的长度单位, 如图所示 :(2) 互化公式 : 设 M 是坐标平面内任意一点, 它的直角坐标是(x, y) ,极坐标是 (,) (0), 于是极坐标与直角坐标的互化公式如表:点 M直角坐标 ( x, y)极坐标 (,)过极点 , 倾斜角为(1)(R)或(R2x2y2的直线(2)(0)和(0)xcos互化公式y (xysintan0)过点 ( a,0)
4、 , 与极轴xcosa()在一般情况下 , 由 tan确定角时 , 可根据点 M 所在的象限最小正角 .22垂直的直线4. 常见曲线的极坐标方程曲线图形极坐标方程过 点 ( a,),与极)2sina(0圆心在极点, 半径轴平行的直线为 r 的圆r (02 )圆心为 (r ,0), 半径2r cos()由于平面上点的极坐标的表示形式不唯一,即2注 :为 r 的圆2(,),(,2),( ,),( ,), 都表示同一点的坐标, 这与圆 心 为 (r ,) , 半(0点的)直角坐标的唯一性明显不同22r sin. 所以对于曲线上的点的极坐标的多种表径为 r 的圆示形式 , 只要求至少有一个能满足极坐标
5、方程即可. 例如对于极坐标方程,点M( ,) 可以表示为 ( ,2 )或(,2 )或(-,54)4444444等多种形式 , 其中 , 只有 (, ) 的极坐标满足方程.44二、参数方程1. 参数方程的概念一般地 , 在平面直角坐标系中, 如果曲线上任意一点的坐标x, y 都是某xf (t )个变数 t 的函数 , 并且对于 t 的每一个允许值, 由方程组所确yg (t )定的点 M ( x, y) 都在这条曲线上, 那么方程就叫做这条曲线的参数方程,联系变数 x, y 的变数 t 叫做参变数 , 简称参数 , 相对于参数方程而言, 直接给出点的坐标间关系的方程叫做普通方程.2. 参数方程和普
6、通方程的互化(1) 曲线的参数方程和普通方程是曲线方程的不同形式, 一般地可以通过消去参数而从参数方程得到普通方程.(2) 如果知道变数 x, y 中的一个与参数t 的关系 , 例如 xf (t ) , 把它代入普通方程 , 求出另一个变数与参数的关系y g(t) , 那么xf (t)y就g (t)是曲线的参数方程, 在参数方程与普通方程的互化中, 必须使 x, y 的取值范围保持一致 .注: 普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。3圆的参数如图所示,设圆O 的半径为 r ,点
7、M 从初始位置 M 0出发,按逆时针方向在圆 O 上作匀速圆周运动,设xr cosM (x, y) ,则( 为参数)。yr sin这就是圆心在原点O ,半径为 r 的圆的参数方程,其中的几何意义是 OM 0 转过的角度。圆心为 ( a,b) ,半径为 r 的圆的普通方程是 ( xa)2( y b) 2r 2 ,xar cos它的参数方程为:yb( 为参数)。r sin4椭圆的参数方程以 坐 标 原 点 O 为 中 心 , 焦 点 在 x 轴 上 的 椭 圆 的 标 准 方 程 为x2y 21(a bxa cos(为参数 ) ,其中参数a2b20), 其参数方程为b siny称为离心角; 焦点在
8、 y 轴上的椭圆的标准方程是y2x21(a b 0),a2b2xb cos( 为参数 ), 其中参数其参数方程为a sin仍为离心角,通常规定y参数的范围为0 ,2)。注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,焦点在 y 轴上的双曲线的标准方程是y2x21(a 0, b 0), 其参a2b2xb cot为参数,其中且数方程为(0,2 )e.ya csc以上参数都是双曲线上任意一点的离心角。6抛物线的参数方程以坐标原点为顶点, 开口向右的抛物线y22 px( p0) 的参数方程为要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转x2 pt2y2 pt(t为参数 ).
9、角数值可相等外(即在0 到 2的范围内),在其他任何一点,两个角的数值都不相等。 但当 02时,相应地也有 0,在其他象限内类2似。5双曲线的参数方程以 坐 标 原 点 O 为 中 心 , 焦 点 在 x 轴 上 的 双 曲 线 的 标 准 议 程 为x2y21(a 0,bxa seca2b20), 其参数方程为( 为参数 ) ,其中yb tan0, 2 )且3.,227直线的参数方程经 过 点 M 0 ( x0 , y0 ), 倾 斜 角 为 () 的 直 线 l 的 普 通 方 程 是2y y0tan(x x0 ), 而过 M 0 ( x0 , y0 ) ,倾斜角为的直线 l 的参数方程xx0t cos为y0(t为参数 ) 。yt sin注:直线参数方程中参数的几何意义:过定点 M 0 ( x0 , y0 ) ,倾斜角为xx0t cos的直线 l 的参数方程为y0(t为参数 ) ,其中 t 表示直线 l 上以yt sin定点 M 0 为起点,任一点M ( x, y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能场馆租赁合同范本(官方版)
- 2025年小帮手药盒项目投资可行性研究分析报告
- 2025年管道配件法兰弯头项目可行性研究报告
- 2025年度房地产企业销售顾问聘用与业绩提成合同
- 2025年度文化产业合法正规劳动合同示范书
- 2025年度合法融资担保合同范本及法律风险防范
- 2025年度餐饮居间服务补充协议
- 人工智能与自动化技术对物流的影响
- 2025年度货物堆放场地租赁及环境监测合同
- 2025年度大型活动场地搭建临时劳务合同范本
- 战略管理与伦理
- 如何构建高效课堂课件
- 虚拟化与云计算技术应用实践项目化教程 教案全套 第1-14周 虚拟化与云计算导论-腾讯云服务
- 甲基丙烯酸甲酯生产工艺毕业设计设备选型与布置模板
- 徐金桂行政法与行政诉讼法新讲义
- 沥青拌合设备结构认知
- 2023年北京高考政治真题试题及答案
- 复旦中华传统体育课程讲义05木兰拳基本技术
- 北师大版五年级上册数学教学课件第5课时 人民币兑换
- 工程回访记录单
- 住房公积金投诉申请书
评论
0/150
提交评论