Mathematica在大学物理教学当中的应用_第1页
Mathematica在大学物理教学当中的应用_第2页
Mathematica在大学物理教学当中的应用_第3页
Mathematica在大学物理教学当中的应用_第4页
Mathematica在大学物理教学当中的应用_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Mathematica在高中物理教学中的应用 秦江川摘 要:本文从高中物理实验教学和课堂教学两方面着手研究,针对常用教学工具如Powerpoint制作的教学课件难以演示的一些典型实例,借助Mathematica的功能来实现。将Mathematica应用于一些物理实验数据的处理和物理模型的模拟,可以使高中物理教学更加形象、生动,从而取得更加良好的教学效果;同时进一步推动基础物理教学方法的现代化进程。关键词:Mathematica;演示;模拟;教学效果引言在目前中学物理的课堂教学中,教学课件尤其是Powerpoint的应用已经非常广泛并且能够取得比较好的教学效果,但是对于一些物理问题的最终结果不能

2、给出形象的演示,基于此可以借助Mathematica强大的函数分析能力、图象模拟能力,将其应用于多媒体教学当中,从而在高中物理课堂教学活动当中,能够更生动形象地向学生表达出抽象的物理含义、详细的物理过程。此外,在实验教学当中,通过对Mathematica软件的应用,借助它强大的数据处理能力,能够相对高精确度地对实验数据作出处理,从而使得Mathematica在实验教学当中作为教学辅助工具而得到广泛的推广和应用。在科技高速发展的今天,教师仅凭借讲解和板书的方式来给学生们灌输一些物理模型已显得捉襟见肘了,而我们应用Mathematica和计算机多媒体的结合使用,充分弥补了这一不足。1 Mathem

3、atica在课堂教学中对物理模型的模拟1.1 粒子在非匀强磁场中运动轨迹的描绘一根竖直放置的无限长载流直导线,使其通过0.5电流,其方向向上。现有一质子在距离其载流导线10m处沿平行于载流直导线的方向向上以初速的速度开始运动。对于质子在非匀强磁场中的运动轨迹,传统教学中我们只能靠想象来描绘,而应用Mathematica的图象模拟功能,我们可以化抽象思维为形象思维,形象地展示出质子的运动轨迹。首先根据题意,取载流导线与的交点为坐标原点,建立坐标系(如图1.1所示),质子处于无限载流直导线所产生的非匀强磁场当中。在质子的运动过程中,质子受到洛伦兹力 (1.1)根据牛顿第二定律可知: 即: 图1.1

4、 (1.2)再有无限长载流直导线周围的磁场分布情况为: (1.3)对以上公式、数据,应用Mathematica对其进行编程如下:j=x''t= -q/m*y't;图1.2 k=y''t=q/m*x't;r=x0=10;s=y0=0;p=x'0=0;n=y'0=100;f=NDSolvej,k,r,p,s,n,xt,yt,t,0,3;ParametricPlotEvaluatext,yt/.f,t,0,3,PlotRange®All,Frame®True应用程序,可得到质子在非匀强磁场中的运动轨迹图形,如图1.2

5、所示。此图形象地演示出了粒子在无限载流直导线所产生的非匀强磁场中的运动轨迹。可见,借助Mathematica,可以直观形象地给出粒子的运动情况,将其运用于课堂教学中,能够更形象直观地向学生讲解物理过程。1.2 静止点电荷系所产生的电场线的图象描绘现有三个点电荷所组成的静止点电荷系统。三个点电荷所带的电量分别为-q、-q、+2q,对其适当选取坐标,三个点电荷在其坐标平面上的位置如图1.3所示,其中一个点电荷-q位于坐标原点,另一个点电荷-q位于y轴上的a点处,最后一个点电荷2q图1.3位于y轴的-a点处。对于点电荷系周围的电场分布情况,一般的教学软件是难以将其图象模拟出来的。对此,我们应用Mat

6、hematica来对其图象作出模拟。因在x-o-y平面内,任一点的电场强度为:其中任意一条电场线应满足: (1.4)求解(1.4)式可得: (1.5)此式即是电场线应满足的方程,常数C取不同值时将会得到不同的电场线,上式是一个超越方程,由此式直接解出的表达式再编程作图是很困难的。为此我们将各式的分子、分母同除a可得: (1.6)对(1.6)作代换: 应用Mathematica对其进行编程如下:<<GraphicsImplicitPlotm=k=Tablem=c,c,0,3,0.1;ImplicitPlotk,x,-5,5,y,-5,5,Frame®True系统将自动生成如

7、下: - 图1.4此图形象地展示出了点电荷系周围的磁场分布情况,此图形用Powerpoint是难以完成的。而应用Mathematica却能够方便、简单地模拟出其图形情况,从而使物理课堂教学更加的直观、形象。1.3 电偶极子振荡辐射过程中,所产生电场线的图象的描绘电偶极子振荡在电磁波辐射理论中有着重要的作用,对此我们要清楚了解其振荡辐射的电场线的规律。注:电偶极子的电偶极矩为: 对其采用球面坐标、可得到任意时刻t、任意空间处r的辐射电场: 辐射的电场线应满足方程: (1.7)解(1.7)式可得: (1.8)此式即为辐射电场线所满足的方程,C取不同值时就会得到不同的辐射电场线。将写成: (1.9)

8、而 (1.10)对(1.8)式的变量r、t作无量纲化处理、并将(1.9)、(1.10)式代入(1.8)式得: (1.11)对(1.11)式作代换: ,应用Mathematica对以上数据进行编程如下:<<GraphicsImplicitPlotm=k=Tablem=c,c,-1,1,0.2;ImplicitPlotk,x,-1,1,y,-1,1,Frame ®True系统将自动生成如下: - 图1.5图1.5形象地模拟出电偶极子振荡所辐射的电场线的情况,应用Mathematica,任意一条电场线在辐射过程中随时间演化的进程都能够形象地展示出来。至于电场线的演化进程,我们可

9、以在(1.11)式中,取C=0.4,分别取0,0.25,0.50,0.75,1.00,就可以得到这条电场线的辐射进程。应用Mathematica编程如下:<<GraphicsImplicitPlotm=ImplicitPlotm,x,-1,1,y,-1,1,Frame ®True则系统会自动生成如下:图1.6图1.6形象地展示出了一条电场线的辐射进程。将图1.5、图1.6引入课堂教学当中,从而更形象地向学生们展示出电偶极子振荡所辐射的电场线分布情况。2 Mathematica在实验教学中对实验数据的处理在传统物理实验教学中,我们在对实验数据的图形化处理中,误差相对来说比较

10、大,而通过Mathematica软件的应用,它能对实验数据作出较精确的拟合。2.1载流圆线圈中心轴线上的磁场实验数据的处理通过亥姆霍兹线圈仪,利用95A型集成霍尔传感器测量半径为10, 相距为5或10cm的两个完全相同的载流圆线圈中心轴线上的磁感应强度值B。实验时取电流值I=400mA。相距每厘米记录一磁感应强度。实验数据记录如下:R为5cm时的数据记录:-9,0.834,-8,0.960,-7,1.095,-6,1.245,-5,1.378,-4,1.512,-3,1.626,-2,1.712,-1,1.781,0,1.806,1,1.796,2,1.752,3,1.675,4,1.563,

11、5,1.435,6,1.299,7,1.154,8,1.013,9,0.881R为10cm时的数据记录:-9,0.970,-8,1.087,-7,1.183,-6,1.271,-5,1.340,-4,1.385,-3,1.410,-2,1.421,-1,1.423,0,1.423,1,1.422,2,1.420,3,1.413,4,1.392,5,1.355,6,1.294,7,1.212,8,1.111,9,1.005应用Mathematica对以上数据进行编程如下:j=-9,0.834,-8,0.960,-7,1.095,-6,1.245,-5,1.378,-4,1.512,-3,1.62

12、6,-2,1.712,-1,1.781,0,1.806,1,1.796,2,1.752,3,1.675,4,1.563,5,1.435,6,1.299,7,1.154,8,1.013,9,0.881;k=-9,0.970,-8,1.087,-7,1.183,-6,1.271,-5,1.340,-4,1.385,-3,1.410,-2,1.421,-1,1.423,0,1.423,1,1.422,2,1.420,3,1.413,4,1.392,5,1.355,6,1.294,7,1.212,8,1.111,9,1.005;r=ListPlotj,Frame ®True;s=ListPl

13、otk,Frame ®True;u=ListPlotj,PlotJoined ®True,Frame ®True;v=ListPlotk,PlotJoined ®True,Frame ®True;Showr,s,u,v系统自动生成如下:(b)(a)(d)(c) (e) 图2.1图2.1中,(a)(b)两图分别是R为5cm时和R为10cm时的实验数据在坐标图中的记录点,(c)(d)两图是用Mathematica语句将各点连线,(e)图是将两种情况置于同一幅图中以便对照比较。可见,通过实验操作取得数据后,几个简单的Mathematica语句就可以对

14、实验结果精确绘制图线。在实验过程中所记录的一些数据通过Mathematica做处理,使它们能够更精确地展示出亥姆霍兹线圈的磁场分布情况,从而使实验教学在传统教学的基础上得到更进一步的提高。2.2 静电场描绘中,图形的绘制在静电场描绘中,满足式: (2.1)其中a、b分别为内外电极的半径。<表2.1>实验数据记录如下:半径15.201.57.257.247.187.207.347.2421.979900.098682.54.004.194.004.073.924.0361.395250.164474.03.053.103.022.832.982.9961.097280.263165.

15、01.191.211.171.161.171.1800.165510.328976.00.880.860.890.870.900.880-0.127830.39474对(2.1)式作如下代换:故存在以下五点:(0.09868,1.97990),(0.16447,1.39525),(0.26316,1.09728),(0.32897,0.16551),(0.39474,-0.12783)应用Mathematica编程如下:d=0.09868,1.97990,0.16447,1.39525,0.26316,1.09728,0.32897,0.16551,0.39474,-0.12783;s=Fit

16、d,1,x,x;u=ListPlotd;v=Plots,x,-0.05,0.45;Showu,v系统自动生成如下: 图2.2通过应用Mathematica对实验静电场描绘中实验记录数据的处理,模拟出静电场中的图形。在图2.2中,应用Mathematica描绘出实验所记录出的点,并通过Mathematica语句对这些点给予线性拟合。总结通过以上的大量实例分析,可知Mathematica在高中物理的教学过程当中,能够发挥到相当好的作用。以它强大的函数分析能力、图象模拟能力、数据处理能力,从而使得它在物理教学过程当中,不但能够显示各种复杂的物理现象,而且能够对其做出形象化的图形模拟。一方面,它充当了

17、教师在做课件时的强大工具,从而可以给学生们提供形象、直观的教学信息,提高了教学效率。另一方面,它又鼓励了学生们用它对一些物理问题给予探索和模拟,从而提高学生们的学习积极性,培养了学生们的创新能力。参考文献1 洪维恩.数学运算大师Mathematica4.0M.北京:人民邮电出版社.2002.2 马葭生、宦强.大学物理实验M.上海:华东师范大学出版社. 2001.3 赵凯华、陈熙谋.电磁学M.北京:高等教育出版社.1985.4 梁绍荣、池无量.普通物理学电磁学M.北京:北京师范大学出版社. 1985.5 张星辉.电力线方程及图形J.电子科技大学学报.1997,26:203205.6 宋福、杨培林

18、、罗世彬.电偶极振子电场的图示J.大学物理.2002,21(6):815.Application of Mathematica in Teaching Process of College Physics Jiangchuan QinAbstract: This thesis begins with the experiment teaching and classroom teaching of physics. Some representative example, which is made by the common teaching courseware like Powepoint and difficult to be show, can be realized using the function of Mathematica. If Mathematica can be used to process some experimental data in physics and simulate the physical model, the teaching effect of physics wil

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论