万有引力与航天重点知识归纳_第1页
万有引力与航天重点知识归纳_第2页
万有引力与航天重点知识归纳_第3页
万有引力与航天重点知识归纳_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学习必备精品知识点万有引力与航天重点知识归纳考点一、万有引力定律1. 开普勒行星运动定律( 1) 第一定律(轨道定律) :所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。( 2) 第二定律(面积定律) :对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。( 3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:a3k。其中 k 值与太阳有关,与行星无关。T 2( 4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时, a3k,但 k 值不同, k 与行星有关,与卫星无关。T 2(

2、 5)中学阶段对天体运动的处理办法:把椭圆近似为园,太阳在圆心;认为v 与 不变,行星或卫星做匀速圆周运动; R3k , R轨道半径。T 22. 万有引力定律( 1) 内容:万有引力F 与 m1m2 成正比,与r2 成反比。( 2) 公式: F G m1m2 , G 叫万有引力常量, G 6.67 10 11 Nm2 / kg 2 。r 2( 3) 适用条件:严格条件为两个质点;两个质量分布均匀的球体,r 指两球心间的距离;一个均匀球体和球外一个质点, r 指质点到球心间的距离。( 4) 两个物体间的万有引力也遵循牛顿第三定律。3.万有引力与重力的关系(1)万有引力对物体的作用效果可以等效为两

3、个力的作用,一个是重力mg,另一个是物体随地球自转所需的向心力f,如图所示。在赤道上, F=F 向 +mg,即 mg G Mm m 2 R ;R2在两极 F=mg,即 G Mmmg ;故纬度越大,重力加速度越大。R2由以上分析可知,重力和重力加速度都随纬度的增加而增大。(2) 物体受到的重力随地面高度的变化而变化。在地面上,MmGM ;在地球表面高度为h 处:GmggR2R2GMmmghg hGM,所以 ghR22 g,随高度的增加,重力加速度减小。(R22(R h)h)( R h)考点二、万有引力定律的应用求天体质量及密度1 T 、 r 法: G Mmr 22 g、 R 法: G MmR23

4、 v、 r 法: G Mm r 2Mm4 v、 T 法: G r 2mr (2)2M4 2 r 3 ,再根据V4R3 ,M3 r 3 ,当 r=R 时,3TGT 23VGT 2R3GT 2mgMR2 g ,再根据 V4R3 ,M3 gG3V4 GRv 2rv 2mMGrmv 2Mm2)2Mv3Tr,Gmr (2Gr 2T学习必备精品知识点考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则MmGM 。GmggR2R2注意: R 指星球半径。2、 距星球表面某高度处的重力加速度:GMmGM,或g hR22 g。2mghg h2(R h)(

5、 R h)( Rh)注意:卫星绕星球做匀速圆周运动,此时的向心加速度GM,即向心加速度与重力加速度相等。an2(R h)考点四、天体或卫星的运动参数我们把卫星(天体)绕同一中心天体所做的运动看成匀速圆周运动,所需要的向心力由万有引力提供,Mmv 2242,就可以求出卫星(天体)圆周运动的有关参数:G r 2man mrmrmr (T 2 )1、 线速度: G Mmm v 2vGM12、角速度: G Mm mr2GM1r 2rrrr 2r 3r 33 周期: G Mmmr ( 2 ) 2T 2r 3r 34、向心加速度: G MmmananGMr 2TGMr 2r 2规律:当r 变大时,“三小”

6、( v 变小 , 变小 ,an 变小)“一大”(T 变大)。考点五、地球同步卫星对于地球同步卫星,要理解其特点,记住一些重要数据。总结同步卫星的以下“七个一定”。1、 轨道平面一定:与赤道共面。2、 周期一定: T=24h ,与地球自转周期相同。3、 角速度一定:与地球自转角速度相同。4、 绕行方向一定:与地球自转方向一致。5、 高度一定:由Mmm(R h)422h3 gR2T 276 R2。G2T2, GM gR42R 3.6 10 m( R h)6、 线速度大小一定:7、 向心加速度一定:Mmv2GMgR2。Gm,GMgR2v3.1 103(R h)2( R h)R hR hm/ sG M

7、mma ,GMgR2aGMgR20.23m/ s2 。(R h )2nn(R h)2(R h)2考点六、宇宙速度1、 对三种宇宙速度的认识:第一宇宙速度人造卫星近地环绕速度。大小v1=7.9km/s 。第一宇宙速度的算法:法一:由Mmv 2GM ,r=R+h ,而近地卫星h=0, r=R,则Mmv2GGGM ,代入数据可算r2mvR2mvrrRR得: v1=7.9km/s 。法二:忽略地球自转时, 万有引力近似等于重力,v 2gr ,同理 r=R+h ,而近地卫星 h=0 ,r=R ,则 mg mvrmg m v 2vgR ,代入数据可算得: v1 =7.9km/s 。R对于其他星球的第一宇宙

8、速度可参照以上两法计算。计算重力加速度时一般与以下运动结合:自由落体运动;竖直上抛运动;平抛运动;单摆( 2)第二宇宙速度脱离速度。大小 v2=11.2km/s ,是使物体脱离地球吸引,成为绕太阳运行的行星的最小发射速度。( 3)第三宇宙速度逃逸速度。学习必备精品知识点大小 v3=16.7km/s ,是使物体脱离逃逸引力吸引束缚的最小发射速度。2、 环绕(运行)速度与发射速度的区别:三种宇宙速度都是发射速度,环绕速度是指卫星绕地球做匀速圆周运动时的线速度大小;轨道越高,环绕速度越小,所需的发射速度越大,所以第一宇宙速度时指最大环绕速度,最小发射速度。考点七卫星变轨问题B人造卫星发射过程要经过多

9、次变轨,如图所示,我们从以下几个方面讨论:一、变轨原理及过程1、为了节约能量,卫星在赤道上顺着地球自转方向发射卫星到圆形轨道1 上。12、在 A 点点火加速,由于速度变大,万有引力不足以提供轨道上做圆周运动的向心A力,卫星做离心运动进入轨道2。3、在 B 点(远地点)再次点火进入轨道3。二、一些物理量的定性分析321、速度:设卫星在园轨道1 和 3 运行时速率为 v1、v3,在 A 点、 B 点速率为 vA、vB。在 A 点加速,则 vA v1,在 B 点加速,则 v3 vB,又因 v1 v3,故有 vA v1 v3vB。2、加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道1 还是轨

10、道2 经过 A 点,卫星的加速度都相同,同理,经过B 点加速度也相同。3、周期:设卫星在1、2、3 轨道上运行周期分别为T1、T2、T 3。轨道半径分别为r1、 r2(半长轴)、r3,由开普勒第三定律 r 3k 可知, T1 T2 T 3。T 2三、从能量角度分析变轨问题的方法把椭圆轨道按平均半径考虑,根据轨道半径越大,卫星的机械能越大,卫星在各轨道之间变轨的话,若从低轨道进入高轨道,则能量增加,需要加速;若从高轨道进入低轨道,则能量减少,需要减速。四、从向心力的角度分析变轨问题的方法当万有引力恰好提供卫星所需向心力时,即Mmv 2时,卫星做匀速圆周运动。GR2m R若速度突然增大时,若速度突

11、然减小时,G Mm m v 2 ,万有引力小于向心力,做离心运动,则卫星轨道半径变大。R2RG Mm m v 2 ,万有引力大于向心力,做近心运动,则卫星轨道半径变小。R2R考点八双星问题被相互引力系在一起,互相绕转的两颗星就叫物理双星。双星是绕公共重心转动的一对恒星。如图所示双星系统具有以下三个特点:1、各自需要的向心力由彼此间的万有引力相互提供,即:Gm1 m22r1, Gm1m22;2m1 1L2m2 2 r2L2、两颗星的周期及角速度都相同,即:T1=T 2, 1=2 ;3、两颗星的半径与它们之间距离关系为:r1+r 2=L 。补充一些需要用到的知识:1、卫星的分类:卫星根据轨道平面分

12、类可分为:赤道平面轨道(轨道在赤道平面内);极地轨道(卫星运行时每圈都经过南北两极) ;任意轨道(与赤道平面的夹角在0o90o之间)。但轨道平面都经过地心。卫星根据离地高度分类可分为:近地卫星 (在地球表面附近绕地球做匀速圆周运动的卫星,可认为 h=0 ,r=R);任意高度卫星(离开地面一定高度运行的卫星,轨道半径r=R+h , R 指地球半径,h 指卫星离地高度,其中同步卫星是一个它的一个特例)。轨道平面都经过地心。2、人造卫星的机械能:E=EK +EP(机械能为动能和引力势能之和),动能 EK1 mv 2 ,由运行速度决定;2学习必备精品知识点引力势能由轨道半径(离地高度)决定,r 增大,

13、动能减小,引力势能增大,但EPEK ,所以卫星的机械能随着轨道半径(离地高度)增大而增大。3、人造卫星的两个速度:发射速度:在地球表面将人造卫星送入预定轨道运行所必须具有的速度,发射时所具有的动能要包括送入预定轨道的动能和引力势能之和,即机械能,所以r 增大,发射速度增大;环绕(运行)速度:卫星在轨道上绕地球做匀速圆周运动所具有的速度,GMmv 2GM , r增R 2mvRR大时,环绕速度减小。4、推导并记住近地卫星的几个物理量的公式和数值:近地卫星指在地球表面附近环绕地球做匀速圆周运动的卫星,可认为h=0 , r=R。运行速度:Mmv 2GM,它是所有卫星的最大运行速度(因为 h=0,无需增

14、大引力GmvgR 7.9km / sR2RR势能,故发射速度等于运行速度,所以这个速度又是所有卫星的最小发射速度);角速度:Mmmr2GM ,r=R,GMG2r 3R3r,r 最小, 它的角速度在所有卫星中最大。(无需记数值)Mm2) 2T2r3,r=R,T2R385 min =5100s,r 最小,它的周期在所有卫星中最小。周期: Gmr(GMr 2TGM向心加速度:G MmmaanGM , r=R, aGMg9.8m / s2 , r 最小,它的向心加速度在所有卫r 2nr 2nR2星中最大。5、卫星的追击问题:由 G Mmmr ( 2 )2T2r 3知,同一轨道上的两颗卫星,周期T 相同

15、,后面的不可能追上前面的。卫星r 2TGM绕中心天体的半径越大,T 越大。同一半径方向不同轨道的两颗卫星(设周期分别为T1、T2 ,且 T1 T2 )再次相遇的时间满足tt1,或BA2。TBT A6、万有引力与航天知识要注意模型:把天体都看成质点;把天体的运动在没有特殊说明时都看成匀速圆周运动;常见的匀速圆周运动模型分三种:核星模型(中心天体不动,行星或卫星绕中心天体运动);双星模型(两颗星绕连线上某点做周期相同的匀速圆周运动);三星模型(三颗星组成稳定的系统,做匀速圆周运动,三颗星一般组成正三角形或在一条直线上)。7、估算问题的思维与解答方法:估算问题首先要找到依据的物理概念或物理规律(这是关键);运用物理方法或近似计算方法,对物理量的数值或取值范围进行大致的推算;估算题常常要利用一些隐含条件或生活中的常识。如:在地球表面受到的万有引力等于重力;地球表面附近的重力加速度g=9.8m/s2 ;地球自转周期T=24h ,公转周期T0=365 天;月球绕地球公转周期约为 27 天;近地卫星周期为 85 分钟;日地距离约 1.5 亿千米;月地距离约 38 亿千米;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论