高中抛物线知识点归纳总结与练习题及答案_第1页
高中抛物线知识点归纳总结与练习题及答案_第2页
高中抛物线知识点归纳总结与练习题及答案_第3页
高中抛物线知识点归纳总结与练习题及答案_第4页
高中抛物线知识点归纳总结与练习题及答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、抛物线xyOlFxyOlFlFxyOxyOlF定义平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线。=点M到直线的距离范围对称性关于轴对称关于轴对称焦点(,0)(,0)(0,)(0,)焦点在对称轴上顶点离心率=1准线方程准线与焦点位于顶点两侧且到顶点的距离相等。顶点到准线的距离焦点到准线的距离焦半径焦 点弦 长焦点弦的几条性质oxFy以为直径的圆必与准线相切若的倾斜角为,则若的倾斜角为,则 切线方程一 直线与抛物线的位置关系直线,抛物线,消y得:(1)当k=0时,直线与抛物线的对称轴平行,有一个交点;(2)当k0时, 0,直线与抛物线相交,两

2、个不同交点; =0, 直线与抛物线相切,一个切点; 0,直线与抛物线相离,无公共点。(3) 若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)二 关于直线与抛物线的位置关系问题常用处理方法直线: 抛物线,1 联立方程法: 设交点坐标为,,则有,以及,还可进一步求出, 在涉及弦长,中点,对称,面积等问题时,常用此法,比如1. 相交弦AB的弦长 或 b. 中点, , 2 点差法:设交点坐标为,代入抛物线方程,得 将两式相减,可得a. 在涉及斜率问题时,b. 在涉及中点轨迹问题时,设线段的中点为, 即,同理,对于抛物线,若直线与抛物线相交于两点,点是弦的中点,则有(注意能用这个公式的条

3、件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)抛物线练习及答案1、已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为 。(,1)2、已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为 。3、直线与抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,则梯形的面积为 。4、设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为 。5、抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,垂足为,则的面积是 。6、已知抛物线的焦

4、点为,准线与轴的交点为,点在上且,则的面积为 。7、已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为 。8、在平面直角坐标系中,有一定点,若线段的垂直平分线过抛物线则该抛物线的方程是 。9、在平面直角坐标系中,已知抛物线关于轴对称,顶点在原点,且过点P(2,4),则该抛物线的方程是 。10、抛物线上的点到直线距离的最小值是 。 11、已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 。3212、若曲线|1与直线没有公共点,则、分别应满足的条件是 。=0,-1<<113、已知抛物线y-x2

5、+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于( )CA.3 B.4 C.3 D.414、已知抛物线的焦点为,点,在抛物线上,且, 则有() 15、已知点,是抛物线上的两个动点,是坐标原点,向量,满足.设圆的方程为。(1) 证明线段是圆的直径;(2)当圆C的圆心到直线x-2y=0的距离的最小值为时,求p的值。解: (1)证明1: ,整理得: ,设M(x,y)是以线段AB为直径的圆上的任意一点,则,即,整理得:,故线段是圆的直径。证明2: ,整理得: ,.(1)设(x,y)是以线段AB为直径的圆上则即,去分母得: ,点满足上方程,展开并将(1)代入得:,故线段是圆的直径。证明3

6、: ,整理得: ,(1)以线段AB为直径的圆的方程为,展开并将(1)代入得:,故线段是圆的直径(2)解法1:设圆C的圆心为C(x,y),则,又因,所以圆心的轨迹方程为,设圆心C到直线x-2y=0的距离为d,则,当y=p时,d有最小值,由题设得,.解法2: 设圆C的圆心为C(x,y),则,又因,所以圆心的轨迹方程为,设直线x-2y+m=0到直线x-2y=0的距离为,则,因为x-2y+2=0与无公共点,所以当x-2y-2=0与仅有一个公共点时,该点到直线x-2y=0的距离最小值为将(2)代入(3)得,解法3: 设圆C的圆心为C(x,y),则圆心C到直线x-2y=0的距离为d,则,又因,当时,d有最

7、小值,由题设得,.16、已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.(1)当AB轴时,求、的值,并判断抛物线C2的焦点是否在直线AB上;(2)是否存在、的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的、的值;若不存在,请说明理由.解:(1)当ABx轴时,点A、B关于x轴对称,所以m0,直线AB的方程为x=1,从而点A的坐标为(1,)或(1,). 因为点A在抛物线上,所以,即. 此时C2的焦点坐标为(,0),该焦点不在直线AB上.(2)解法一当C2的焦点在AB时,由()知直线AB的斜率存在,设直线AB的方程为.AyBOx由消去y得. 设A、B的坐标分别

8、为(x1,y1), (x2,y2),则x1,x2是方程的两根,x1x2.因为AB既是过C1的右焦点的弦,又是过C2的焦点的弦,所以,且.从而.所以,即.解得.因为C2的焦点在直线上,所以.即.当时,直线AB的方程为;当时,直线AB的方程为.解法二当C2的焦点在AB时,由()知直线AB的斜率存在,设直线AB的方程为.由消去y得. 因为C2的焦点在直线上,所以,即.代入有.即. 设A、B的坐标分别为(x1,y1), (x2,y2),则x1,x2是方程的两根,x1x2.由消去y得. 由于x1,x2也是方程的两根,所以x1x2.从而. 解得.因为C2的焦点在直线上,所以.即.当时,直线AB的方程为;当

9、时,直线AB的方程为. 解法三设A、B的坐标分别为(x1,y1), (x2,y2),因为AB既过C1的右焦点,又是过C2的焦点,所以.即. 由()知,于是直线AB的斜率, 且直线AB的方程是,所以. 又因为,所以. 将、代入得,即.当时,直线AB的方程为;当时,直线AB的方程为.17、如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点。(1)求抛物线的焦点F的坐标及准线l的方程;(2)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值。(1)解:设抛物线的标准方程为,则,从而因此焦点的坐标为(2,0).又准线方程的一般式为。从而

10、所求准线l的方程为。答(21)图(2)解法一:如图(21)图作ACl,BDl,垂足为C、D,则由抛物线的定义知|FA|=|FC|,|FB|=|BD|.记A、B的横坐标分别为xxxz,则|FA|AC|解得,类似地有,解得。记直线m与AB的交点为E,则,所以。故。解法二:设,直线AB的斜率为,则直线方程为。将此式代入,得,故。记直线m与AB的交点为,则,故直线m的方程为.令y=0,得P的横坐标故。从而为定值。18、已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的内接圆(点为圆心)(1)求圆的方程;(2)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值(1)解法

11、一:设两点坐标分别为,由题设知解得,所以,或,设圆心的坐标为,则,所以圆的方程为 解法二:设两点坐标分别为,由题设知又因为,可得即由,可知,故两点关于轴对称,所以圆心在轴上设点的坐标为,则点坐标为,于是有,解得,所以圆的方程为 (2)解:设,则 在中,由圆的几何性质得,所以,由此可得则的最大值为,最小值为19、若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.(1)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;(2)试问:点P(

12、x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.解: (1)设AB为点P(x0,0)的任意一条“相关弦”,且点A、B的坐标分别是(x1,y1)、(x2,y2)(x1x2),则y21=4x1, y22=4x2,两式相减得(y1+y2)(y1-y2)=4(x1-x2).因为x1x2,所以y1+y20.设直线AB的斜率是k,弦AB的中点是M(xm, ym),则k=.从而AB的垂直平分线l的方程为 又点P(x0,0)在直线上,所以 而于是故点P(x0,0)的所有“相关弦”的中点的横坐标都是x0-2.(2)由(1)知,弦AB所在直线的方程是,代入中,

13、整理得 (·)则是方程(·)的两个实根,且设点P的“相关弦”AB的弦长为l,则因为0<<4xm=4(xm-2) =4x0-8,于是设t=,则t(0,4x0-8).记l2=g(t)=-t-2(x0-3)2+4(x0-1)2.,若x0>3,则2(x0-3) (0, 4x0-8),所以当t=2(x0-3),即=2(x0-3)时,l有最大值2(x0-1).若2<x0<3,则2(x0-3)0,g(t)在区间(0,4 x0-8)上是减函数,所以0<l2<16(x0-2),l不存在最大值.综上所述,当x0>3时,点P(x0,0)的“相关弦”

14、的弦长中存在最大值,且最大值为2(x0-1);当2< x03时,点P(x0,0)的“相关弦”的弦长中不存在最大值.ABOQyxlM20、已知曲线C是到点P()和到直线距离相等的点的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。(1)求曲线C的方程;(2)求出直线的方程,使得为常数。(1)解:设为上的点,则,到直线的距离为由题设得化简,得曲线的方程为(2)解法一:设,直线,则,从而在中,因为,所以 .,当时,从而所求直线方程为解法二:设,直线,则,从而ABOQyxlMHl1过垂直于的直线因为,所以,Oyx1lF当时,从而所求直线方程为21、如图,已知点

15、,直线,为平面上的动点,过作直线的垂线,垂足为点,且(1)求动点的轨迹的方程;(2)过点的直线交轨迹于两点,交直线于点,已知,求的值;解法一:(1)设点,则,由得:,化简得(2)设直线的方程为:PBQMFOAxy设,又,联立方程组,消去得:,故由,得:,整理得:,一、抛物线的定义及其应用例1、设P是抛物线y24x上的一个动点(1)求点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值;(2)若B(3,2),求|PB|PF|的最小值例2、(2011·山东高考)设M(x0,y0)为抛物线C:x28y上一 点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,

16、则y0的取值范围是() A(0,2)B0,2 C(2,) D2,)二、抛物线的标准方程和几何性质例3、抛物线y22px(p>0)的焦点为F,准线为l,经过F的直线与抛物线交于A、B两点,交准线于C点,点A在x轴上方,AKl,垂足为K,若|BC|2|BF|,且|AF|4,则AKF的面积是 ()A4 B3 C4 D8例4、过抛物线y22px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|2|BF|,且|AF|3则此抛物线的方程为 ( ) Ay2xBy29x Cy2x Dy23x三、抛物线的综合问题例5、(2011·江西高考)已知过抛物线y22px(p&

17、gt;0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若 ,求的值例6、(2011·湖南高考)(13分)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求· 的最小值例7、已知点M(1,y)在抛物线C:y22px(p>0)上,M点到抛物线C的焦点F的距离为2,直线l:yxb与抛物线C交

18、于A,B两点(1)求抛物线C的方程;(2)若以AB为直径的圆与x轴相切,求该圆的方程例题答案解析一、抛物线的定义及其应用例1、(1)如图,易知抛物线的焦点为F(1,0),准线是x1.由抛物线的定义知:点P到直线x1的距离等于点P到焦点F的距离于是,问题转化为:在曲线上求一点P,使点P到点A(1,1)的距离与点P到F(1,0)的距离之和最小显然,连结AF交曲线于P点,则所求的最小值为|AF|,即为.(2)如图,自点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|P1F|.则有|PB|PF|P1B|P1Q|BQ|4.即|PB|PF|的最小值为4.例2、解析:圆心到抛物线准线的距离为p,即p4,

19、根据已 知只要|FM|>4即可根据抛物线定|FM|y02由y02>4,解得y0>2,故y0的取值范围是(2,)二、抛物线的标准方程和几何性质例3、设点A(x1,y1),其中y1>0.由点B作抛物线的准线的垂线,垂足为B1.则有 |BF|BB1|;又|CB|2|FB|,因此有|CB|2|BB1|,cosCBB1,CBB1.即直线AB与x轴的夹角为.又|AF|AK|x14,因此y14sin2,因此AKF的面积等于|AK|·y1×4×24.例4分别过点A、B作AA1、BB1垂直于l,且垂足分别为A1、B1,由已知条件|BC|2|BF|得|BC|2

20、|BB1|,BCB130°,又|AA1|AF|3,|AC|2|AA1|6,|CF|AC|AF|633,F为线段AC的中点故点F到准线的距离为p|AA1|,故抛物线的方程为y23x.三、抛物线的综合问题例5、(1)直线AB的方程是y2(x),与y22px联立,从而有4x25pxp20,所以:x1x2,由抛物线定义得:|AB|x1x2p9,所以p4,从而抛物线方程是y28x.(2)由p4,4x25pxp20可简化为x25x40,从而x11,x24,y12,y24,从而A(1,2),B(4,4);设 (x3,y3)(1,2)(4,4)(41,42)又y8x3,即2(21)28(41)即(2

21、1)241.解得0,或2.例6、 (1)设动点P的坐标为(x,y),由题意有|x|1.化简得y22x2|x|.当x0时,y24x;当x<0时,y0.所以,动点P的轨迹C的方程为y24x(x0)和y0(x<0) (2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为yk(x1)由,得k2x2(2k24)xk20. (7分)设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1x22,x1x21. (8分)因为l1l2,所以l2的斜率为. 设D(x3,y3),E(x4,y4),则同理可得x3x424k2,x3x41. (x11)(x21)(x31)

22、·(x41) x1x2(x1x2)1x3x4(x3x4)1 (11分)1(2)11(24k2)184(k2)84×216. 当且仅当k2,即k±1时, ·取最小值16. 例7 、(1)抛物线y22px(p>0)的准线为x,由抛物线定义和已知条件可知|MF|1()12,解得p2, 故所求抛物线C的方程为y24x.(2)联立消去x并化简整理得y28y8b0.依题意应有6432b>0,解得b>2.设A(x1,y1),B(x2,y2),则y1y28,y1y28b,设圆心Q(x0,y0),则应用x0,y04.因为以AB为直径的圆与x轴相切,所以圆

23、的半径为r|y0|4.又|AB|所以|AB|2r8,解得b.所以x1x22b2y12b2y24b16,则圆心Q的坐标为(,4)故所求圆的方程为(x)2(y4)216.练习题1已知抛物线x2ay的焦点恰好为双曲线y2x22的上焦点,则a等于 ()A1B4 C8 D162抛物线y4x2上的一点M到焦点的距离为1,则点M的纵坐标是 ()A B C. D.3(2011·辽宁高考)已知F是拋物线y2x的焦点,A,B是该拋物线上的两点,|AF|BF|3,则线段AB的中点到y轴的距离为 () A. B1 C. D.4已知抛物线y22px,以过焦点的弦为直径的圆与抛物线准线的位置关系是 ()A相离

24、B相交 C相切 D不确定5(2012·宜宾检测)已知F为抛物线y28x的焦点,过F且斜率为1的直线交抛物线于A、B两点,则|FA|FB|的值等于 () A4 B8C 8 D166在y2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是 ()A(2,1) B(1,2) C(2,1) D(1,2) 7设抛物线y28x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足如果直线AF的斜率为,那么|PF| ()A4 B8 C8 D168(2011·陕西高考)设抛物线的顶点在原点,准线方程为x2,则抛物线的方程是 ( ) Ay28x By28x Cy2

25、4x Dy24x9(2012·永州模拟)以抛物线x216y的焦点为圆心,且与抛物线的准线相切的圆的方程为_10已知抛物线的顶点在原点,对称轴为y轴,抛物线上一点Q(3,m)到焦点的距离是5,则抛物线的方程为_11已知抛物线y24x与直线2xy40相交于A、B两点,抛物线的焦点为F,那么| | | | _.12过抛物线y24x的焦点作直线交抛物线于A(x1,y1),B(x2, y2)两点,若x1x26,那么 |AB|等于_13根据下列条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x29y2144的左顶点;(2)过点P(2,4)14已知点A(1,0),B(1,1),抛物线C:y

26、24x,O为坐标原点,过点A的动直线l交抛物线C于M,P两点,直线MB交抛物线C于另一点Q.若向量与的夹角为,求POM的面积练习题:1解析:根据抛物线方程可得其焦点坐标为(0,),双曲线的上焦点为(0,2),依题意则有2解得a8.2解析:抛物线方程可化为x2,其准线方程为y.设M(x0,y0),则由抛物线的定义,可知y01y0.3解析:根据拋物线定义与梯形中位线定理,得线段AB中点到y轴的距离为:(|AF|BF|).4解析:设抛物线焦点弦为AB,中点为M,准线l,A1、B1分别为A、B在直线l上的射影,则|AA1|AF|,|BB1|BF|,于是M到l的距离d(|AA1|BB1|)(|AF|BF|)|AB|半径,故相切5解析:依题意F(2,0),所以直线方程为yx2由,消去y得x212x40.设A(x1,y1),B(x2,y2),则|FA|FB|(x12)(x22)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论