高等传热学课程作业1_第1页
高等传热学课程作业1_第2页
高等传热学课程作业1_第3页
高等传热学课程作业1_第4页
高等传热学课程作业1_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高等传热学 课程作业Homework 5.21. Slug flow in a tube(u(r) = V) with a fully developed temperature profile:- Constant heat flux- What is T(r)?·Remember dTm/dx = constant·Use dT/dr = 0 at r = 0 and Tw at r = R to get ingration constants- What is Nu?A: 根据能量方程, (1)对于充分发展的管内弹状流,u=0, 且由于 = constant,因此(1

2、)式可化简为: (2)解之可得, (3)根据边界条件,代入(3)中,得到C1=0, 平均温度因此,得到2. Fully developed Poiseuille flow between parallel plates- Constant heat flux- Top and bottom at the same temperature- Neglect viscous dissipation- What is T(y)?·Remember dTm/dx = constant·Use Tw at y = 0 and y = h to get integration cons

3、tants- What is Nu?A: 根据能量方程, (1)对于x方向充分发展的Poiseuille流,v=w=0由于 = constant,(1)式可化为: (2)根据,且,代入得到解得温度分布为 (3)根据Poiseuille流边界条件:带入(3)式中解得,, 因此,得到温度分布为根据 Nu Homework 5.31. Find the equation for the boundary layer thickness and for Cf for:Compare to the exact values and the fourth order equation solutions.

4、A: 对于,根据边界条件, a = 0, 1 = b + c + d对于平板,有, c = 0根据, b + 3d = 0由此可得,a = 0, b = 1.5, c = 0, d = -0.5.对于U = constant,积分后得到,与精确解相差7.2%,与4级近似解相差20.5%,且与精确解相差2.6%,与4级近似解相差5.5%2. Derive the ordinary differential equation and the boundary conditions for the Blasius solution energy equation for flow over a fl

5、at plate. (See pages 29-30)A: 根据能量方程,常壁温边界条件:根据Blasius solution 代入能量方程中得到,即 边界条件为3. Start from the local friction coefficient for flow over a flat plate, Cf, on slide 31 and derive the average friction coefficient over the entire plate, CL. Show your work.A: 4. A projectile in the form of a bluff-en

6、ded cylinder 20 cm in diameter and 60 cm long, moves through the air in the direction of its long axis at a velocity U of 100 m/s. The drag coefficient, C, is equal to 1.0 for this object. Frontal area=pD2/4, FD= total dragAssuming that the boundary layer thickness over the cylindrical surface of th

7、e projectile at a distance x from the leading edge is given by:and that the momentum thickness of the boundary layer is given by: Find what proportion of the total drag on the projectile is attributable to skin friction over the curved surface, assuming no pressure gradient in the boundary layer in

8、the streamline direction. Data. Air kinematic viscosity is 0.15 cm2/sAir density is 1.15 Kg/m3Assumptions: Assume this is like a flat plate, then use the equation on slide 15. A: 若将圆柱表面看成平板,U = constant, ,则因为12.16N180.64N6.7%Homework 5.41. Derive the equation relating q” to the temperature differenc

9、e for natural convection driven flow in a round tube (like on slide 19 for parallel plates).- water properties at 25 C- tube length = 100 cm- tube diameter = 1 mm- constant heat flux- fully developed flow in a tube (from the first homework)a) Plot DT and Q (m3/s) versus heat flux for fluxes of 500 t

10、o 5000 W/m2 b) Is the assumption of fully developed flow valid?- hint: is L/(D Re) > 0.05c) Is the Boussinesq approximation valid here?A: 圆管内充分发展的流体,其速度分布为平均速度体积流量为根据能量平衡,即 将代入,得到,a) 根据以上推导过程可以得到,分别作出当时与Q随q变化的曲线,如下图所示。b) 125.4 > 0.05 满足充分发展的假设c) 热膨胀系数0.085 < 1满足Boussinesq假设2. a) Derive the similarity solution equation for

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论