高考数学第一轮总复习~058复数的概念_第1页
高考数学第一轮总复习~058复数的概念_第2页
高考数学第一轮总复习~058复数的概念_第3页
高考数学第一轮总复习~058复数的概念_第4页
高考数学第一轮总复习~058复数的概念_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品资源复数复数在现教材中虽被“淡化”,但根据近年高考试题分析,它依然是高考得“基础分” 的热点试题之一.(一)高考要求:1、了解引进复数的必要性,理解复数的有关概念;掌握复数的代数表示及向量表示.2、掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.(二)热点分析:1、从历年高考试题看,复数部分的考查重点是复数的有关概念、复数的代数形式运算及运 算的几何意义.2、复数的有关概念是复数运算,复数应用的基础,高考中重点考查的概念有虚数、纯虚数、 共腕复数,两复数相等及复数的模,在解答涉及这些概念的复数运算、推理题中,对这些 概念的理解、掌握是审清题的关键也是获得解题思路

2、的源泉.3、在对复数代数形式运算的考查中,常出现可利用复数 i , 1±i , -2±等i,的乘方运算的结果,如(1 士i)2 =2i,i4n* =i4k,(T 士亨i)3=i来简化计算过程.(三)复习建议:1.坚持全面复习与重点复习相结合本章的知识点有:(1)数的概念的发展,(2)复数的有关概念,(3)复数的向量表示,(4)复数 的加法与减法,(5)复数的乘法与除法由于试题中本章内容多以中低档题的出现.难度不大, 但涉及面广,对基本问题掌握的熟练程度要求较高.所以对基本问题不能放松要求,举例如(1)复数的基本概念:如复数为虚数,纯虚数的条件,模的性质,复数相等条件的运用等

3、。(2)下述结果的变形运用 i 4n =1/4n 1 4n 2 7严 3 3(n N)(1 土i)2 =2i,排 = -i,W=i ,设 co =一2 +-23-i 贝U co3 =1©2 =e,1 +© +cc2 =0(3)复数问题实数化的基本方法由复数相等的定义,可以将复数问题转化为实数问题,这就是复数问题实数化的基本方法.2、重视复数与相关知识的联系(1)复数问题可转化为实数范围内的代数问题.(2)复数问题转化为平面几何问题在复习过程中,要充分利用有关知识,实现问题的转化3.强调数学思想方法的训练转化思想:要求在全面理解掌握复数知识的同时,善于将复数向实数转化,将复数

4、向三角、几何转化分类讨论思想:分类讨论是一种重要的解题策略和方法.它能使复杂的问题简单化,复 数考试中经常用到这种分类讨论思想.数形结合思想:运用数形结合思想处理复数平面问题是高考考查的热点之一,应引起注g3.1058复数的概念一、知识回顾1、复数:形如a+bi(a,b WR)的数叫做复数,a,b分别叫它的实部和虚部.2、分类:复数a+bi(a,b WR)中,当时b=0,就是实数;当b#0时,叫做虚数;当a=0, b.0时,叫做纯虚数3 .复数的相等:如果两个复数实部相等且虚部相等就说这两个复数相等,4 .共腕复数:当两个复数实部相等,虚部互为相反数时.这两个复数互为共腕复数。(当虚部不为零时

5、,也可说成立为共腕虚数).5、复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫虚轴.6.两个实数可以比较大小、但两个复数如果不全是实数,就不能比较它们的大小,考试要求:了解引进复数的必要性;理解复数的有关概念;掌握复数的代数表示及向量表示.二、基本训练1 (广东卷)若(a -2i )i =b -i ,其中a、b w R , i使虚数单位,则a2 +b2 =5(A) 0 (B) 2 (C)5 (D) 522.(福建卷)复数z=的共腕复数是A. l+1iB. 1C, 1-iD. 1+i2 22 23,已知关于x的方程X +。+团0溺71二 °有实根,则

6、纯虚数m的值是1 1 . , 1 . 1工T T-iA. 12 B. 12 C.3 D,34,若复数(京-冽-2)十3溺+2)(期eK )在复平面内对应的点位于虚轴上,则 朋 的 取值集合为A '! B ' 1 C 1! D5 .若 zi =sin28+icos8 ,z2=c0s8+i V3sin ,当 9 =()时,zi = z2AH B 2k 二 3 C 2k 一二 3 D 2k 二 66 .若x-2+yi和3x-i互为共腕复数,则实数x,y的值是7 .方程(2 +i)x2 -(5 +i)x +(2 2i) =0 的实数解是 x=8 .(北京卷)若 z1=a+2i, z2=

7、34i,且亘为纯虚数,则实数a的值为Z2三、例题分析:1、实数m取什么值时,复数lg(m22m 2)+ (m2+3m+2) i,是纯虚数;是实数2、已知X、y为共腕复数且(x+y)2 3xyi =46i求x、y3、已知zi =x2+Jx2+li , Z2 =(x2 +a)i ,对任意xw R均有| z1 |>2 |成立,试求实数a的取值 范围4、zC,求满足z十4WR,且|z W|=2的复数四、作业同步练习3.1058复数的概念1、复数Zl = 3+i, Z2=1 >则z=zi与在复平面内对应的点位于()A第一象限内B第二象限内C第三象限内D第四象限内2、若复数z满足=吕,则z=(

8、)A -3+4iB -3-4i C 3-4iD 3 + 4i3、设z为复数,则“ |z|=1是"z+wR”的()A充分不必要条件B必要不充分条件C充要条件D不充分不必要条件4、 复数 z =1 +coso(十i sinct(n <ot <2n)的模为 ()A 2cos2 B 2cos号 C 2sin-2 DWtan号5、已知4, z2是复数,以下四个结论正确的是()若.+ z2 = 0 ,贝. = 0 ,且 z2 = 0| zj+| z2| = 0,则 z1 = 0,且 z2=0若 z1 + z1 = 0 贝U z1 = 0,若 | z1 |= | z2 |, 则向量oz

9、1和oz2 重合A仅正确B仅正确C仅正确D仅正确1 i6、 (05辽宁卷)复数z =1.在复平面内,z所对应的点在()1 iA.第一象限 B.第二象限C.第三象限 D.第四象限7、 (05天津卷)2.若复数丈0(aCR, i为虚数单位位)是纯虚数,则实数 a的值为1 - 2i()A. -2B. 4C. -6D. 68、 (05浙江卷)在复平面内,复数 i +(1+”后)2对应的点位于()1 i(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限9、(2004年辽宁卷.4)设复数z满足上工6,则|1十z|二().1 zA. 0 B. 1 C. 2 D. 2_10、(2004年浙江卷.理6

10、)已知复数z1=3+4i, z2 =t+i ,且4三是实数,则实数t=().A. 3 B. 4 C. - D. -3433411、设z=3+2i, z和z在复平面内对应的点分别为 A和B, O为坐标原点,则AAOB的面积为12、若twR, t¥0、1时,复数z= T+t +早i的模的取值范围是13、已知 f(z31+z|G,且 f(z)=10+3i,求复数 z,z-D14、旻数z¥两足|z|=1,求证:1+z2R15、设复数 z=2loga + (log:x-1)i(a >0,a =1),问当x为何实数时,z是实数, 虚数, 纯虚数,z在复平面上对应的点在实轴上方,|

11、z|二1答案基本训练1 5、DBBC D6、1 x=-1,y=1.7、2.8. 83例题分析:1 /2 c c c1解:由复数lg(m2_2m_2)+ (m2+3m+2)i是纯虚数,有,皿? -2m -2) =0所以m=3 m +3m+200“2c由题意严j2m-2) A0得m=-1,或m=-2m +3m +2 =02解:设x=a+bi(a,bR),则y=a -bi代入原式得222(2a) -3(ab )i =4 -bi2C 4a =4a = W223(a2+b2)=-6、b=1a =1r>.或】b =a =-1r>.或】b =1a二所以"1:刈X 1i_r.或y=1+i

12、'x = 1 + i 或y = -1 -ix = 1 -J欢下载3 解:|z1 | = *rx4 +x2 +1,|Z2 |=|x2 +a|因为 | 4 |>| Z2 |有 Jx4 +x2 +1 习 x2 +a |即(1 2a)x2 +(1 a2) >0恒成立,当122=0即2=2时,0x2+(1 ) >0恒成立,1二 -1 :二 a :二 21 -2a 0= -4(1 -2a)(! w2) ::0所以a的取值范围是(-1,14 解;设 z=a+bi (a,bwR),贝U z+q = a+bi+£=(a 天)+(b r)i ,由题意得 a ba bb 2幻=0

13、 ,因止匕 b=0 或 a2 +b2 =1 a b由 |z-2|=2. (a -2)2 b2 =4当b=0时,a=4或a=0 (舍去)当 a2+b2=1 时,a=4,b=±乎故 z=4 或 z =4 ±45i作业110、DDABA BCBCA11、6.12、|z| _, 2 ;13、解:由 f(z)1+z|G,得 f (国=|1 -z| <Tz) =10 3i设 z=a+bi(a, b R)|1-(a+bi)|- (-bi)=10+3i得.(1 ab2 a -bi =10 3i 广 ,jv(1 -a)2 +b2 +a =10 . :a =5b =3(b - 3.z =5 -3i14、 证明:因 |z|=1,故 |z|2=z z=1,,z= -1所以(卷)=&=可二卷所以卷 R15、解:当logjx-1=0,即x=a或3时z为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论