版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 知识的传播不再是一种给予 而是一种需求,一种渴求 第2讲 旋转 知识点2:旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角。性质:性质:对应点到旋转中心的距离相等。对应点与旋转中心所连线段的夹角等于旋转角。旋转前、后的图形全等。旋转三要素:旋转的中心、方向、角度。(注意:三要素中只要任意改变一个,图形就会不一样。)1旋转的定义: 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角.注意:在旋转过程中保持不动的点是旋转中心2旋转的三个要素: 旋转中心、旋转的角度和方向.3旋转
2、的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4简单图形的旋转作图:(1)确定旋转中心;(2)确定图形中的关键点;(3)将关键点沿指定的方向旋转指定的角度;(4)连结各点,得到原图形旋转后的图形.例1.台风“麦莎”过去后,许多大树被大风刮倒吹折.一棵笔直的大树被风吹折后倒地,折断点为B(B点离地面为树高的 1/3 处).求B的度数. 例2如图,RtABC中,C90°,ABC60°,ABC以点C为中心旋转到ABC的位置,使B在斜边AB上,AC与AB相交于D,试确定BDC的度数例3把AOB绕点O逆时针方向旋转
3、90°,画出旋转后的图形三、旋转的应用:例9已知E、F分别在正方形ABCD边AB和BC上,AB=1,EDF=45°.求BEF的周长.例5把正方形ADCB绕着点A,按顺时针方向旋转得到正方形AGFE,边BC与GF交于点H(如图)试问线段GH与线段HB相等吗?请先观察猜想,然后再证明你的猜想例题:1. 将等腰直角ABC绕直角顶点A按逆时针方向旋转60°后,使点C到点E,点B到点D,得到ADE,且AB1。则EC的长是 。2. 边长为4的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为 。3.如图,已知点O是正三角形ABC三条高的交点,现将AOB绕
4、点O旋转,使其和BOC重合,则至少应旋转 ( )A、60° B、120° C、240° D、360°一、选择题1(苏州)下列图形中,旋转600后可以和原图形重合的是() A、正六边形 B、正五边形 C、正方形 D、正三角形2(眉山)数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°以上四位同学的回答中,错误的是( ) A、甲 B、乙 C、丙 D、丁第3题图第2题图3(南平)如图,将ABC绕着点C按顺时针方向旋转
5、20°,B点落在位置,A点落在位置,若,则的度数是( )A、50° B、60° C、70° D、80°4(安徽)在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转900得到OA´,则点A´的坐标是( )A、(-4,3) B、(-3,4) C、(3,-4) D、(4,-3)5(济宁)在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( )第6题图 A、(-2,1) B、(1,1) C、(-1,
6、1) D、(5,1)6(嘉兴)如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对ABC分别作下列变换:先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90其中,能将ABC变换成PQR的是()A、B、C、 D、8(潍坊)如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为( )ABCD第8题图A、B、C、D、第10题图10(衡阳)如图所示的五角星绕中心点旋转一定的角度后能
7、与自身完全重合,则其旋转的角度至少为_15(青岛)如图,P是正三角形 ABC 内的一点,且PA6,PB8,第15题图PC10若将PAC绕点A逆时针旋转后,得到P'AB ,则点P与点P' 之间的距离为_,APB_°17(宿迁)如图,在平面直角坐标系中,三角形、是由三角形依次旋转后所得的图形(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形20如图,方格纸中的每个小方格都是边长为1个单位的正方形,RtABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(6,1),点B的坐标为(3,1),点C的坐标为(3,3)(1)将原来的RtAB
8、C绕点O顺时针旋转90°得到RtA1B1C1,试在图上画出RtA1B1C1的图形。(2)求线段BC扫过的面积。(3)求点A旋转到A1路径长。第20题图22(衡阳)已知,如图ABCD中,ABAC,AB=1,BC=,对角线AC、BD交于0点,将直线AC绕点0顺时针旋转,分别交BC、AD于点E、F(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点0顺时针旋转的度数24(内蒙古)如图(),两个不全等的等腰直角三角形和叠
9、放在一起,并且有公共的直角顶点(1)将图()中的绕点顺时针旋转角,在图()中作出旋转后的(保留作图痕迹,不写作法,不证明)(2)在图()中,你发现线段,的数量关系是,直线,相交成度角(3)将图()中的绕点顺时针旋转一个锐角,得到图(),这时(2)中的两个结论是否成立?作出判断并说明理由若绕点继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由图()图()图()17如图15,ABC、ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?18如图16,ABC是等腰三角形,BAC=36°,D是BC上一点,ABD经过旋转后到
10、达ACE的位置,旋转中心是哪一点?旋转了多少度?如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?18(1)A点;(2)60°;(3)AC的中点。19 如图17所示,ABP是由ACE绕A点旋转得到的,那么ABP与ACE是什么关系?若BAP40°,B30°,PAC20°,求旋转角及CAE、E、BAE的度数。解旋转角为60°,CAE=40°,E=110°,BAE=110°。20在ABC中,B=100,ACB=200,AB=4cm,ABC逆时针旋转一定角度后与ADE重合,且点C恰好成为AD中点,如图19,指出旋
11、转中心,并求出旋转的度数。 求出BAE的度数和AE的长。解方法一:可看作整个花瓣的六分之一部分,图案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案方法二:可看作是绕中心O依次旋转60°、120°得到整个图案的方法三:可看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半经过轴对称得到的 21如图20,四边形ABCD的BAD=C=90º,AB=AD,AEBC于E,旋转后能与重合。(1)旋转中心是哪一点? (2)旋转了多少度?(3)若AE=5,求四边形AECF的面
12、积。解(1)A点;(2)旋转了90度;(3)由旋转的性质可知,四边形AECF是正方形,所以四边形AECF的面积为25cm2。22如图21所示:O为正三角形ABC的中心你能用旋转的方法将ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图解法一:连接OA、OB、OC即可如图中所示解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示解法三:在解法二中,用相同的曲线连接OD OD1 OD2 即得如图丙所示23已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1) 如图22-1, 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电子借条协议格式
- 2024年水稻种植与农村电商购买合作协议3篇
- 一次性给予女方补偿的离婚协议书
- 2024年生态农业园区经营权转让协议版B版
- 2024年版:压力罐在核电站的应用与维护合同
- 科技创新驱动新质生产力发展的核心机制
- 70后养老前景与展望
- 2024年度委托举办国际学术交流会议合同3篇
- 数字化赋能文化建设实施方案
- 2024年度人民币汇率风险管理外汇保函交易担保合同3篇
- 试验检测单位安全培训课件
- 二年级下册加减混合竖式练习360题附答案
- 公路沥青路面设计标准规范
- 2024年湖北交投智能检测股份有限公司招聘笔试参考题库含答案解析
- 2023年银行安全保卫知识考试题库(含答案)
- 水库白蚁防治标书
- 广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学九年级第一学期期末联考试题含解析
- 电子电路EWB仿真技术
- 小学三年级语文教研活动记录表1
- 初中九年级化学课件化学实验过滤
- 教学课件:《新时代新征程》
评论
0/150
提交评论