酞菁蓝生产废水的处理_第1页
酞菁蓝生产废水的处理_第2页
酞菁蓝生产废水的处理_第3页
酞菁蓝生产废水的处理_第4页
酞菁蓝生产废水的处理_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、酞菁蓝生产废水的处理概述酞菁蓝是一类高级有机颜料,几乎可用于所有的色材领域。由我 院承担设计的甘谷油墨厂2000t/a酞菁蓝生产线,采用捷克先进技术 连续式无溶剂法生产工艺,以苯酐、尿素、氯化亚铜等为原料,钼 酸铵为催化剂,通过原料予预混、反应合成、粗品纯化、压滤干燥等 工序,生产出铜酞菁精品。在粗品铜酞菁的纯化过程中产生的滤液和 冲洗水,含有大量的有害物质。经我院设计人员与省环保协会专家组 的共同研讨,最终确定了该工艺废水的处理方案。1废水的来源及性质废水来自粗品铜酞菁纯化过程产生的滤液和冲洗水,水量为 5.7 mVh,污染物质量浓度见表1。表1处理前废水中污染物质量浓度污染物CODBOD5

2、NH3-NSO42-Cu2+质量浓度/(mg L-1)860.0522.01034.02287.026.0注:处理前废水pH为6.74 a#二缜惧审屯卜iK農幻一二起倩甫離I仙NaJ-tH就疋為*r上拯鼻甲息田1 歳贰忧理工艺厦祇州耳*舟水2关键因素分析从表1数据可见,废水中的氨氮含量较高,而国家标准对于排入 自然水体的废水氨氮浓度要求甚为严格, 不得超过15.0 mg/L。因此, 如何去除氨氮则成为本设计要解决的一个关键环节。由于通常的生化处理法对氨氮的降解率只有70%80%,所以单纯采用生化法处理 难以达到理想效果。如果先以其它物理方法,诸如解吸或吹脱,先将 废水中的NH吹脱,使氨氮含量降

3、低,再采用生化法处理,可同时去 除剩余的氨氮和BOD、COD这样可使废水中的主要污染物指标达到 排放要求。再者,废水中含铜,铜离子能使生物酶失去活性,对生物 氧化系统有毒性效应。而且,铜价值很高,不采用铜回收工艺,会造 成资源的浪费。3废水处理流程简述如图1所示,将纯化废水与车间排出的冲洗水(1.5 m3/h)混合后 泵入一级调节池,加硫酸搅拌调节 pH为4.0,进入充满铁刨花填料 的置换池,停留56 h,可使废水中的铜离子得以置换,质量浓度 降至0.5 mg/L以下,铜的去除率达98%以上。废水自置换池进入二 级调节池,向池中投加石灰乳搅拌混合均匀,调节pH为11.0左右,使废水中的氨氮主要

4、呈游离氨(NH)形式逸出,此时用液下泵将澄清 液送入吹脱塔并向塔内鼓入空气,同时通入蒸汽,将NH吹脱,经排气筒送至高位吸氨器吸收。据计算,经吹脱塔吹脱去除的 NH为7.4 g/h。通过上述物理方法去除部分氨氮,使氨氮质量浓度降至140.0mg/L左右,并将厂区冷却塔排出的废水(4.5 n/h)与之混合,进入三 级调节池,调节废水pH为8.09.0 ,以达到生化处理对碱度的要求。 此时三级调节池内的废水处理量为11.7 m/h ,主要污染物质量浓度:氨氮为 60.0 mg/L, CO助 510.0 mg/L, BOD为 143.0 mg/L。随后将 废水送入“ A O生化处理系统”,经生化处理后

5、再经砂滤池过滤, 去除残留悬浮物,最后排出厂外。排出厂外的废水中污染物质量浓度 见表2,满足污水综合排放标准的要求。表2 处理后废水中污染物质量浓度污染物CODBOD5NH3-NSO42-Cu2+质量浓度/(mg L-1)40.021.011.0100.00.0注:处理后废水pH为7.24主要工艺过程分析4.1 铜回收废水治理流程中,铜回收分渗铁法回收铜和沉淀法回收氢氧化铜两步进行。渗铁法回收铜的装置在流程中称为铜置换池,该池中废水渗滤穿过装有铁刨花的床层,通过氧化还原反应,铜在铁上析出,而 置换出的铁则进入废水中。回收铜后的废水经加石灰乳调节pH沉淀处理,残余的铜离子与OH-反应生成难溶的氢

6、氧化铜。4.2 吹脱本设计采用穿流式筛板吹脱塔 (又名泡沫塔 ) ,筛板孔径 6 mm,筛板间距250 mm水自上向下喷淋,穿过筛孔流下,空气则自下向 上流动。控制空塔的气流速度达到 2.0m/s,筛板上的一部分水就被 气流冲击成泡沫状态,使传质面积大大增加,强化了传质过程,提高 吹脱效率,空气由鼓风机供给,冬季为避免温度下降影响吹脱效率, 可向塔中通入蒸汽, 维持高效去除率所需的水温。 泡沫塔在正常工作 状态下对NH的去除效率在95%以上2。4.3 A O生化处理“ A O生化处理”对废水中的有机物和氨氮有很高的去除率。 生物硝化脱氮是一个两阶段的生物反应过程,第一过程为硝化过程, 分两部进

7、行,首先NHN在亚硝化菌的作用下生成 NO,其后NO-再 在硝化菌的作用下氧化生成 NO。第二过程为反硝化过程,是完成生 物脱氮的最后一步, NO3-N 在反硝化菌的作用下,以有机碳为碳源和 能源,以硝酸盐作为电子受体,将硝酸盐还原为气态氮。所以“A级生物池”不仅具有去除有机物的功能, 而且可以完成反硝化作用最终 消除氮的富营养化污染。“ O级生物池”即好氧反应池,利用好氧微 生物对有机物的降解作用, 去除上一级残余的有机物, 最终达到废水 处理要求。生化处理系统运行中,控制废水温度在2228C, pH为7.58.0 ,为硝化菌和反硝化菌提供适宜的环境。控制厌氧池溶解氧浓度 低于0.5 mg/

8、L,停留时间4 h;好氧池溶解氧浓度2.53.0 mg/L, 停留时间16h。反应池污泥浓度5.06.0 g/L ;总回流比为8.3。5 结论目前利用生化处理方法去除废水中的氨氮被广泛采用, 事实证明 去除率较高, 但对于本设计所涉及的废水, 因其特殊的高含氨氮量则 不适于用单一的生化方法来处理, 生化处理法对进入处理系统的污水 氨氮浓度要求有一定的适宜范围, 如果浓度太高会阻碍生物氧化过程 的进行,质量浓度在 1000 mg/L 以上时会使微生物中毒 3 ,进而影响 生化系统的去除效率。因此,必须采用一种切实可行的预处理方法, 先去除部分氨氮,使废水中的氨氮浓度降至 140.0 mg/L 以

9、下,再采 用生化处理方法去除残留氨氮,以达到最终去除氨氮的目的。探讨城市污水生物处理出水的总磷达标问题1 出水悬浮固体对生物除磷的影响生物除磷系统主要是通过创造对聚磷菌(PAOs)生长的有利条件 使其在活性污泥的菌群中占优势,将活性污泥中的含磷量从1.5%2.0%(常规活性污泥法,P/VSS)增加至5%7%甚至高达10灿上。提高除磷效率的主要途径是首先将污水中的磷通过转化和网捕 为颗粒性磷,从而最大程度地降低出水中的溶解性磷含量, 同时采用适当的分离方法将颗粒性磷通过排泥加以去除。图1表明出水SS对 总磷浓度的影响很大,如当 P/VSS为6%出水SS为20mg/L时出水 颗粒性磷浓度已接近1.

10、0mg/L2.5-U 5 o S d _M- fr2 110MR* !?! II-irSirSIF0102*加出* js/tmf - f')團1岀水SS与颗救性磷浓度的关至国内外经验表明,如采用沉淀分离方式,当生物除磷系统效率较 高、出水溶解性磷量很低、终沉池出水 SS也较低时,出水总磷含量 可满足1mg/L(二级标准)的要求。由于沉淀出水 SS很难达到5mg/L 以下,即使生物除磷系统效率很高,处理出水中的总磷浓度也不太可 能在0.5mg/L以下(一级标准),为达到这一严格标准,还必须采用过 滤或投加化学药剂等措施。2进水BOE/TP值对生物除磷的影响污水中有机物的可甥物降解性能对生

11、物除磷过程的影响至为重要。影响生物除磷的最基本因素是生物处理厌氧段进水中VFAs(包括厌氧段中其他可快速降解基质的发酵产物)与总磷的比值,最好采用 VFA/TP值来判断污水除磷的可能性,但由于工艺反应过程的复杂性而无法测定厌氧区发酵产物的产生速率,因而一般采用进水的BODTP值作为近似比值。试验研究表明,进水 B0I5JTP值V 20的生 物除磷系统出水TP难以达到12mg/L,美国采用生物除磷工艺的9 个污水厂和2个中试厂的运行数据也显示了出水 TP随进水的BODTP 值而变化,当进水 BODTP20时,出水TP可达到1mg/L2。上述生物除磷的最低有机物需要量的概念可用以区别污水系受 碳的

12、限制还是受磷的限制。污水受碳限制是指因污水除磷的碳源不足 而使出水磷含量不能达标;污水受磷限制是指因除磷的碳源充足而使 处理出水中的溶解性磷含量往往较低, 故为获得好的出水水质,采用 污水受磷限制是可行的,但剩余的基质足以导致产生相当数量的非聚 磷菌,这样MLVS芽的含磷量将下降。因此认为由厌氧段进水的 BODTP值可预测系统的MLVS洽磷量和出水磷浓度。为测试方便,通常采用BOD与磷去除量的比值(BOD/ P)来表达 系统的除磷能力:BOD P=进水 BOD/(进水 TP-出水 SP)(1)各种不同生物除磷工艺的典型 BOD P、CODP值见表1。表1不同生物除磷工艺的 BOD5/ 与COD

13、/AP值生物除磷工艺类型除磷效率BOI5/ P 值(mgBOBmgP)CODP 值(mgCOD/mgP)无硝化A/0、VIP、UCT高15 2026 34有硝化的A/O和心中等20 2534 43Barde npho 工艺低> 25> 43将进水BOE/TP值与表1中各工艺相应的BODTP基准比值进行 比较即可确定采用生物除磷的可能性以及可采用的工艺 。欧洲和美国等地某些生物除磷系统的生产运行表明,由于污水处理厂进水中的可快速降解有机物含量不足而使除磷效果不理想,要始终保持出水TPv 1mg/L是比较困难的,往往还需要投加一些化学药剂 。笔者认为,产生以上情况的主要原因在于原污水的

14、发酵程度不 同。污水中的可快速降解有机物的含量(特别是VFAs)对生物除磷系 统的处理效果的影响极为明显。厌氧段污水中的 VFAs来源于进水及 兼氧菌在厌氧段内对其他可快速降解基质进行发酵的产物。当系统为污水发酵提供了良好条件(如管道内温度适宜、污水流速低、曝气程 度小)时则可保证足够的可快速降解基质浓度,从而能够取得有效的 生物除磷效果。但是对那些不具备上述条件的相对新鲜的污水则除磷 效果差。因此虽然有的水样BODTP值相同,但由于可快速降解基 质和VFAs的含量不同会产生不同的除磷效果,这就是有些地区的生物除磷工艺在进水 BOD5/TP 值合适、终沉池效率可靠的情况下而出水TP却难以达到1

15、mg/L的重要原因之一。3 泥龄的选择关于生物除磷的泥龄长短对处理效果的影响, 各国学者对此意见 不一。泥龄长短主要取决于处理系统的脱氮要求 (主要是否需要进行 硝化),如果系统有硝化要求则系统的好氧泥龄的确定受硝化控制。 但硝化菌所需的最短好氧泥龄大于聚磷菌所需的最短好氧泥龄。 若硝 化并非 系统的处理目标则应缩 短泥龄足以防止硝化作用的发生, 使 回流污泥中无硝酸盐氮,以确保A/O系统的除磷效果。泥龄与BODTP 值之间存在密切关系, 泥龄太短则聚磷菌难以生长繁殖, 泥龄太长则 除磷效果下降。Fakase等人在城市污水处理A/O系统试验中发现, 当泥龄从4.3d增加到8d时,BODTP值从

16、19增至26,而活性污泥 含磷量则从 5.4%降至 3.7%。生物除磷系统所需 BOD5/TP 值为泥龄的函数,泥龄较长而混合液 含磷量较低时则 除磷所需的 BOD5 较高,例如活性污泥混合液含磷量 为4.5%、泥龄为25d时,去除1mg磷所需BOD为33mg而当泥龄为 8d时所需BODTP值则下降至25。另根据试验结果,当 A/O系统泥 龄在2.23.6d时除磷效果很好,但一旦泥龄超过 3.6d后则因发生 硝化作用而使除磷效果急剧下降 。可见以除磷为目标的A/O工艺不 宜采用长泥龄,其原因为: 长泥龄导致生物除磷系统产泥量减少,则通过排泥而去除的磷量也减少; 长好氧泥龄导致有机物的氧化相对完

17、全,但污泥活性降低使 好氧区对磷的吸收率下降,活性污泥混合液的含磷量减少; 长泥龄下因衰减反应造成磷的二次释放。4 系统中硝酸盐的回流干扰我国城市污水中的TKN般约为4050mg/L,其中约2/3为 NH3-N ,硝化处理增加了系统中的 NO3-N 含量,由于 NO3-N 通过污泥回 流进入厌氧段发生反硝化可消耗可溶性 BOD从而影响磷的释放,降 低了除磷效果,进而使出水 TP无法达标。要减少硝酸盐的回流量就 必须提高系统的反硝化程度。 但由于现行排放标准对处理出水的总氮 尚无要求,因此水厂往往会着重考虑 NO3-N 的达标而忽略了系统中的 NO3 -N 含量,从而拟省去反硝化系统。这一问题已

18、成为目前某些城市 污水处理厂方案讨论中的焦点之一。根据我国目前的情况, 宜从消除回流污泥中的硝酸盐对生物除磷 的不利影响着手,根据除磷要求考虑反硝化程度。UCT/VIP等工艺的主要特点就是消除回流污泥中的硝酸盐, 但其流程较复杂。 水环境联 合会(WEF于20世纪90年代提出另一方法,就是将厌氧段的第一反 应格作为回流污泥的反硝化池,一部分污水 (5%20%)进入该池进行 回流污泥的反硝化,其余污水进入厌氧池的第二反应格。此法优于 UCT/VIP工艺,因为它取消了后者所增加的回流系统,而且由于在这 一反硝化池中的MLSS浓度高,使反硝化更为有效。如美国MasonNeck污水处理厂的生物除磷工艺

19、就是将回流污泥引入第一反应格( 缺氧段 )进行反硝化, 然后再顺序进入第二反应格 (厌氧段 ) ,与一沉池污泥发 酵液混合进行磷的释放后再与生物滤池出水一起进入好氧段, 形成了 规模为30000mVd的OWAS工艺(未设置好氧段MLSS勺回流系统), 除磷效果良好 3 。早在 1990年初,中国市政工程华北设计研究院就结合泰安污水 处理厂的建设要求而提出了改良 A/A/O工艺,即在厌氧段前增设缺氧 段,来自二沉池的回流污泥和10%的进水进入该段,停留时间为20 30min以去除回流硝酸盐氮,保证了厌氧段的稳定运行,测试结果表 明,该工艺的除磷脱氮效果优于改良 UCT法。近年来在改良A/A/O工艺的基础上又将好氧段MLSS回流系统取 消,开发了缺氧 /厌氧/好氧工艺(回流污泥反硝化生物除磷工艺 ),突 破了传统A/A/O工艺的概念,与UCT/VIP相比省去了两个回流系统, 节省了基建造价和运行费用, 运行管理简便灵活, 而且由于缺氧池内 的MLSS浓度接近回流污泥浓度而使反硝化效率较高,从而有效地消 除了硝酸盐氮对厌氧段的不利影响,出水 TP可达标(1.0mg/L)。5 结论 城市污水生物除磷系统在适宜的进水水质和正常运行条件 下,一般可以获得溶解性磷含量很低的出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论