DNA链上的重复结构及其意义和应用价值_第1页
DNA链上的重复结构及其意义和应用价值_第2页
DNA链上的重复结构及其意义和应用价值_第3页
DNA链上的重复结构及其意义和应用价值_第4页
DNA链上的重复结构及其意义和应用价值_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、DNA链上的重复结构及其意义和应用价值00000000001.脱氧核糖核酸的简介1.1脱氧核糖核酸(英语:Deoxyribonucleic acid,缩写为DNA)又称去氧核糖核酸,是一种分子,可组成遗传指令,最少要265到350个才可以1,引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。  脱氧核糖核酸是染色体的主要化学成分,同时也是组成基因的材料。有时也被称为“遗

2、传微粒”,原因是在繁殖过程中,父代会把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。DNA的结构: DNA的结构一般可划分为一级结构、二级结构、三级结构、四级结构四个水平。DNA2是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)。3而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白

3、质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。对于人类而言,正常的体细中含有46条染色体。染色体在细胞分裂之前会先在分裂间期完成复制,细胞分裂间期又可划分为:G1期-DNA合成前期、S期-DNA合成期、G2-DNA合成后期。对于真核生物,如动物、植物及真菌而言,染色体主要存在于细胞核内;而对于原核生物,如细菌而言,则主要存在于细胞质中的拟核内。染色体上的染色质蛋

4、白,如组织蛋白,能够将DNA进行组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。1.2脱氧核糖核酸的分子结构DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3,5-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体X174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(

5、A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。1.3结构特点DNA的结构一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。1.3.1一级结构是指构成核酸的四种基本组成单位脱氧核糖核苷酸(核苷酸),通过3',5'磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位脱氧核糖核苷酸的排列顺序。  一级结构每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧

6、啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查加夫(Chargaff)法则(即碱基互补配对原则)。1.3.2二级结构  二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里

7、克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体X174、G4、M13等。有的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周(螺距)是3.4nm,这是-DNA的结构,在生物体内自然生成的DNA几乎都是以-DNA结构存在。1.3.3三级

8、结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间  三级结构结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就

9、不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。1.3.4四级结构核酸以反式作用存在(如核糖体、剪接体),这可看作是核酸的四级水平的结构。1.3.5拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,它可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。2.以上是对脱氧核糖核酸的复习对于DNA链上的重复结构我们重点介绍脱氧核糖核酸重复顺序和端粒2.1脱氧核糖核酸重复顺序美国学者R·J·布里顿于1968年提出突变复制假说,认

10、为用进化的时间表来衡量,某种DNA顺序的倍增是一种突发的事件,重复顺序传给后代,并可能通过自然选择在种群中扩散。美国学者G·P·史密斯在1973年提出交换固定假说,它的基本前提是在姊妹染色单体间的不对等交换。他通过电子计算机模拟连续的交换过程,说明这种交换确实能导致重复顺序的形成。这两个假说都是推理性的,而且只能说明串接式重复顺序的出现。在实践层面上,布里顿等在1968年首先通过DNA分子的复性动力学研究证实了真核生物细胞中存在着重复顺序。已有一些研究结果表明某些散布的重复顺序与倒置的重复顺序有类似于转座子的结构,例如酵母的Tyl顺序、果蝇的copia顺序、FB顺序和人的A

11、lu顺序等,它们在基因组中的散布可能与转座子的转移现象有关。2.1.2理论依据  人的DNA复性曲线复性动力学的主要内容:加热可以使DNA双链因碱基对间的氢键断裂而变为两条独立的单链,这一过程称为变性。逐渐降温又可以使两条互补的单链恢复成为双链,这一过程称为复性或退火。复性过程是二级反应,反应的速度取决于两个互补的单链片段相遇的机会,也就是取决于单链的浓度和反应时间。如果以复性的百分比为纵坐标,以反应时间(t,秒)和反应起始时的DNA单链的浓度(C0,核苷酸的克分子浓度)的乘积C0t,(克分子·秒)/升的对数为横坐标作图,则不同生物的DNA的复性进程常不相同(图1

12、);总的趋势是生物的基因组越大,完成复性反应所需要的C0t值也愈大。复性达一半的C0t值用C0t1/2表示。在特定的反应条件下,不同DNA有不同的C0t1/2值。它可以作为基因组的大小和顺序复杂性的表征。真核生物的DNA复性曲线通常不是一条简单的S型曲线,而是可以分解成为若干部分的复杂的曲线,说明它们的DNA顺序的复杂性。例如人的DNA复性曲线(图2)可以分解成为三个部分,分别代表高度重复顺序、中等重复顺序和非重复顺序。2.1.3类型各种不同类型的重复顺序的差别表现在三个方面:每种重复顺序在基因组中出现的频率;组成每个重复单位的核苷酸数;每种重复顺序的特定的核苷酸顺序。依照复性反应的C0t值,

13、可以将重复顺序分为高度重复顺序和中等重复顺序。高度重复顺序的C0t1/2值一般在10-410-1之间,重复频率大于105,它们通常由简单的核苷酸顺序组成,每个重复单位的长度大约是10300个核苷酸对。某些生物的细胞核内的DNA经氯化铯密度梯度超离心后,在主带以外出现的一条卫星带,这是一部分碱基组成特殊而且高度重复的DNA,称为卫星DNA。卫星DNA是串联重复,在小鼠细胞总DNA中约占19%。卫星DNA往往分布在染色体着丝粒周围和端粒的异染色质区中。在显带染色中含卫星DNA的部位以C带的形式出现。中等重复顺序的C0t1/2值一般在10-1102之间,重复频率在102105之间。大部分中等重复顺序

14、与基因组中的独特顺序相间排列,散布在整个基因组中,重复单位的一般长度大约是300±200个核苷酸对。许多中等重复顺序在细胞核中有它的相应的转录产物。至少有一部分这样的顺序属于有功能的基因,例如编码五种组蛋白的基因、核糖体RNA(rRNA,RNA为核糖核酸的缩写)基因、和各种转运RNA(tRNA)基因,这些基因在基因组中的重复频率往往在1001000之间甚至更多。它们在染色体上往往成串排列,形成基因簇。另一种特殊形式的重复顺序是倒置重复顺序,也称回文顺序。这是顺序相同而取向相反的重复顺序,C0t1/2值一般在10-510-4之间,变性后再复性时能在同一单链内形成“发夹”式构型。彼此间能

15、够复性的重复单位的核苷酸顺序往往并不完全相同,这样一组重复顺序形成一个重复家族。实际上在任何一种生物中重复顺序都以重复家族的形式存在。在每种生物中一般都有若干重复家族;在相近的物种中存在着类似的重复家族。例如在人的基因组中有一个Alu重复家族(根据它们都有共同的限制酶Alu的切点而命名),每个成员的长度大约是300个核苷酸对。Alu家族散布在整个基因组中。现已经发现在灵长类以及其他哺乳动物中都有类似Alu的重复家族。在这方面的研究将为基因组的进化提供重要的线索。2.1.4功能除了有已知基因功能的重复顺序外,有些重复顺序可以和核内不均一RNA中的成分进行分子杂交,这说明它们能够转录。但迄今还不能

16、判明它们在细胞生命活动中的确切功能。此外还有一部分重复顺序,如卫星DNA则完全没有转录产物,它们显然不属于结构基因。对各种没有一般基因功能的重复顺序的生物学意义有几种推测:一部分重复顺序可能是毫无意义的顺序,它们在基因组中随同其他DNA顺序一起复制,是基因组中的“寄生物”,或称“自私DNA”。象卫星DNA这样的高度重复顺序可能参与染色体结构的维持,也可能与染色体配对和分离等行为有关,因此被称为“家务DNA”;一些散布的重复顺序可能作为基因间的间隔,组成所谓间隔DNA;部分中等重复顺序可能参与基因调控,因为曾经发现在动物个体发育的不同时期以及不同组织中所转录的重复顺序不同;有些重复顺序在较长的进

17、化过程中可能作为新基因的素材,因为重复顺序家族的成员似乎总是处在连续不断的变化之中。2.2端粒端粒(英文名:Telomeres)是线状染色体末端的DNA重复序列。 端粒是线状染色体末端的一种特殊结构,在正常人体细胞中,可随着细胞分裂而逐渐缩短。中文名端粒(外文名Telomeres作    用保证每条染色体的完整性组    成由简单的DNA高度重复序列组成发现者伊丽莎白·布莱克等三人应    用解决人类衰老和癌症等问题2.2.1定义端粒是线状染色体末端的DNA重复序列

18、,是真核染色体两臂末端由特定  端粒1的DNA重复序列构成的结构,使正常染色体端部间不发生融合,保证每条染色体的完整性。2.2.2概述端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些,构成端粒的一部分基因约50200个核苷酸会因多次细胞分裂而不能达到完全复制(丢失),以至细胞终止其功能不再分裂。因此,严重缩短的端粒是细胞老化的信号。在某

19、些需要无限复制循环的细胞中,端粒的长度在每次细胞分裂后被能合成端粒的特殊性DNA聚合酶-端粒酶所保留。2.2.3功能稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。2.2.4组成端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C13A/TG13和TTAGGG/CCCTAA,并有许多 

20、 端粒酶作用的模式蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;第三,为端粒酶提供底物,解决DNA复制的末端隐缩,保证染色体的完全复制。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。同时,端粒又是基因调控的特殊位点, 常可抑制位于端粒附近基因的转录活性(称为端粒的位置效应,TPE)。在大多真核生物中,端粒的延长是由端粒酶催化的,另外,重组机制也介导端粒的延长。在人类的端粒里,大概会有2:5'.TTAGGG TTAGGG TTAGGG TTAGGG TTAGGG TTAGGG.3' 3'.AATC

21、CC AATCCC AATCCC AATCCC AATCCC AATCCC.5'2.2.5发现之旅科学家们在寻找导致细胞死亡的基因时,发现了一种叫端粒的存在于染色体顶端的物质。端粒本身没有任何密码功能,它就像一顶高帽子置于染色体头上。在新细胞中,细胞每分裂一次,染色体顶端的端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂了。这时候细胞也就到了普遍认为的分裂100次的极限并开始死亡。因此,端粒被科学家们视为“生命时钟”。科学家由此又开始研究精子和癌细胞内的染色体端粒是如何长时间不被缩短的原因。1984年,分子生物学家在对单细胞生物进行研究后  染色体端粒显微镜图

22、,发现了一种能维持端粒长度的端粒酶,并揭示了它在人体内的奇特作用:除了人类生殖细胞和部分体细胞外,端粒酶几乎对其他所有细胞不起作用,但它却能维持癌细胞端粒的长度,使其无限制扩增。早在30年代,缪勒(Muller)和麦克林托克(Meclintock)等就已发现了端粒结构的存在。1978年,四膜虫的端粒结构首先被测定。1990年起,凯文哈里(Calvin Harley)就把端粒与人体衰老挂上了钩:第一、细胞愈老,其端粒长度愈短;细胞愈年轻,端粒愈长,端粒与细胞老化有关系。衰老细胞中的一些端粒丢失了大部分端粒重复序列。当细胞端粒的功能受损时,就出现衰老,而当端粒缩短至关键长度后,衰老加速,临近死亡。

23、第二、正常细胞端粒较短。细胞分裂会使端粒变短,分裂一次,缩短一点,就像磨损铁杆一样,如果磨损得只剩下一个残根时,细胞就接近衰老。细胞分裂一次其端粒的DNA丢失约30200bp(碱基对)。第三、研究发现,细胞中存在一种酶,它合成端粒。端粒的复制不能由经典的DNA聚合酶催化进行,而是由一种特殊的逆转录酶端粒酶完成。正常人体细胞中检测不到端粒酶。一些良性病变细胞,体外培养的成纤维细胞中也测不到端粒酶活性。但在生殖细胞、睾丸  端粒的位置、卵巢、胎盘及胎儿细胞中此酶为阳性。令人注目的发现是,恶性肿瘤细胞具有高活性的端粒酶,端粒酶阳性的肿瘤有卯艇癌、淋巴瘤、急性白血病、乳腺癌、结肠癌

24、、肺癌等等。人类肿瘤中广泛地存在着较高的端粒酶耥端挝酶作为肿瘤治疗的靶点,是当前较受关注的热点之一。其他与寿命有关的基因也在被不断地发现,它们的工作原理与端粒相似。科学家们不但希望能找到人体内所有的生命时钟,更希望找到拨慢时钟的方法。目错前很多植物的端粒酶已被提取出,许多国家的研究组正在从事相关课题的研究。有观点声称,即使可保护端粒在分裂中不被降解的药物被发明,其对于生命常青的意义也有待商榷,应为当一个老年人被植入年轻的端粒后,其身体是否能接受还是一个问题。凭借“发现端粒和端粒酶是如何保护染色体的”这一成果,揭开了人类衰老和罹患癌症等严重疾病的奥秘的三位美国科学家(美国加利福尼亚旧金山大学的伊丽莎白·布莱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论