曲边梯形的面积,定积分的概念_第1页
曲边梯形的面积,定积分的概念_第2页
曲边梯形的面积,定积分的概念_第3页
曲边梯形的面积,定积分的概念_第4页
曲边梯形的面积,定积分的概念_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.5.1曲边梯形的面积曲边梯形的面积这些图形的面积该怎样计算?说教学设想 1.曲边梯形曲边梯形:在直角坐标系中,由连在直角坐标系中,由连续曲线续曲线y=f(x),直线,直线x=a、x=b及及x x轴所围成的轴所围成的图形叫做曲边梯形。图形叫做曲边梯形。Ox y a b y=f (x)一一. . 求曲边梯形的面积x=ax=b 、只有一边是曲线、只有一边是曲线 、其他三边是特殊直线、其他三边是特殊直线 y = f(x)bax yO A1A A1.用一个矩形的面积用一个矩形的面积A A1 1近似代替曲边梯形的面积近似代替曲边梯形的面积A A,得得A A1+ A2用两个矩形的面积 近似代替曲边梯形的

2、面积A, 得 y = f(x)bax yOA1A2A A1+ A2+ A3+ A4用四个矩形的面积 近似代替曲边梯形的面积A, 得 y = f(x)bax yOA1A2A3A4 y = f(x)bax yOA A1+ A2 + + An 将曲边梯形分成将曲边梯形分成 n n个小曲边梯形,并用小矩阵形的面积代替个小曲边梯形,并用小矩阵形的面积代替小曲边梯形的面积,小曲边梯形的面积, 于是曲边梯形的面积于是曲边梯形的面积A A近似为近似为A1AiAn 以直代曲以直代曲, ,无限逼近无限逼近 2 2曲边梯形的面积曲边梯形的面积 求曲边梯形的面积即求曲边梯形的面积即求求 下的面积下的面积)(xfy 0

3、)(xf 分成很窄的小曲边梯形,分成很窄的小曲边梯形, 然后用矩形面积代后求和。然后用矩形面积代后求和。 若若“梯形梯形” ” 很窄,很窄,可近似地用矩形面积代替可近似地用矩形面积代替在不很窄时怎么办?在不很窄时怎么办? 以直代曲以直代曲 Oabxy)(xfy Oabxy)(xfy例例1.求抛物线求抛物线y=x2、直线直线x=1和和x轴所围成的曲边梯形的面积轴所围成的曲边梯形的面积. n1n2nknnxOy解解: :把底边把底边0,10,1分成分成n n等份等份, ,然后在每个分点作底边的垂线然后在每个分点作底边的垂线, , 这样曲边三角形被分成这样曲边三角形被分成n n个窄条个窄条, , 用

4、矩形来近似代替用矩形来近似代替, ,然后把然后把这些小矩形的面积加起来这些小矩形的面积加起来, , 得到一个近似值得到一个近似值: :2xy 因此因此, , 我们有理由相我们有理由相信信, , 这个曲边三角形这个曲边三角形的面积为的面积为: :limnnSS1 1、分割;、分割;2 2、近似代替;、近似代替;3 3、求和;、求和;4 4、取极限、取极限1、分割;、分割;2、近似代替;、近似代替;3、求和;、求和;4、取极限、取极限 用用黄色部分的面积黄色部分的面积来代替曲边梯形的面积,当曲来代替曲边梯形的面积,当曲边梯形分割的越细,蓝色部分面积就越小,就越接近边梯形分割的越细,蓝色部分面积就越

5、小,就越接近曲边梯形的面积曲边梯形的面积. .1 1、分割、分割将曲边梯形分割为将曲边梯形分割为等高等高的小曲边梯形的小曲边梯形分割梯形分割梯形分割分割x轴轴分割定义域分割定义域“等分等分”“等分等分” 1 ,1;.;3,2;2,1;1, 0nnnnnnn“等分等分”区间长度:区间长度:n1i-1n)(yxfini1i-1()Sfnn第 个黄色矩形i-1()nf10( )0Sfnn第1个黄色矩形3111( )Sfnnn第2个黄色矩形3124( )Sfnnn第3个黄色矩形231n-1(n-1)()Sfnnn第n个黄色矩形2 2、近似代替、近似代替第i个小曲边梯形32n) 1i ( S黄色部分3

6、3、求和、求和12n.SSS第 个黄色矩形第 个黄色矩形第 个黄色矩形222223333311012innnnnn22231231nnS曲边梯形S曲边梯形4 4、取极限、取极限S黄色部分limnS黄色部分22231231nn22231231limnnn 311112116limnnnnn31(1)(1) 12(1) 16limnnnnn2111lim()326nnn2111limlimlim326nnnnn131lim3nSS曲边梯形黄色部分i-1n)(yxfini-1()nf第第i i个个小曲边小曲边梯形梯形i-1n)(yxfin第第i i个小个小直边直边“梯形梯形” 思考思考i-1n)(y

7、xfini1i( )Sfnn第 个黄色矩形i( )nf3111( )Sfnnn第1个黄色矩形3124( )Sfnnn第2个黄色矩形1n1( )Sfnnn第n个黄色矩形2 2、近似代替、近似代替32ni3 3、求和、求和S黄色部分12n.SSS第 个黄色矩形第 个黄色矩形第 个黄色矩形2222333312innnnn2223123nn31(1)(21)6limnn nnn4 4、取极限、取极限S曲边梯形S黄色部分S曲边梯形limnS黄色部分2223123nn2223123limnnn2111lim()326nnn2111limlimlim326nnnnn1331(1)(21)6limnn nnn

8、1lim3nSS曲边梯形黄色部分1, iinn在区间上的左端点和右端点的函数值来计算有和区别从小于曲边梯形的面积从小于曲边梯形的面积来无限逼近来无限逼近从大于曲边梯形的面积从大于曲边梯形的面积来无限逼近来无限逼近i-1nin)(yxf第i个小曲边梯形)(ifi个矩形第iS)(n1iifS个矩形第S黄色部分12n.SSS第 个黄色矩形第 个黄色矩形第 个黄色矩形)(n1.)(n1)(n1n21fff)(n1in1if)(n1in1inlimfx)(in1i0 xlimf上任意一点为区间i,1iinn端点右一般用左为了便于计算)(,黄色部分曲边梯形SSnlim2yx求曲边梯形的面积;求曲边梯形的面

9、积;其中曲边为函数其中曲边为函数y=x2 2 练习练习小结小结: :求由连续曲线求由连续曲线y f(x)对应的对应的曲边梯形曲边梯形面积的方法面积的方法 有理由相信,分有理由相信,分点越来越密时,即分点越来越密时,即分割越来越细时,矩形割越来越细时,矩形面积和的极限即为曲面积和的极限即为曲边形的面积。边形的面积。(1 1)分割分割 (2 2)求面积的和求面积的和 把这些矩形面积相加把这些矩形面积相加 作为整个曲边形面积作为整个曲边形面积S S的近似值。的近似值。 (3 3)取极限取极限 n oxy1、分割 将区间等分成 n 个小区间2、以直代曲 对于区间i-1n,1n 作和 S=s1+s2+n

10、=i 小结小结利利用用导导数数我我们们解解决决了了“已已知知物物体体运运动动路路程程与与时时间间的的关关系系,求求物物体体运运动动速速度度”的的问问题题反反之之,如如果果已已知知物物体体的的速速度度与与时时间间的的关关系系,如如何何求求其其在在一一定定时时间间内内经经过过的的路路程程呢呢? 引入引入思思考考:结结合合求求曲曲边边梯梯形形面面积积的的过过程程,你你认认为为汽汽车车行行驶驶的的路路程程 S 与与由由直直线线0,1,0ttv和和曲曲线线22vt 所所围围成成的的曲曲边边梯梯形形的的面面积积有有什什么么关关系系? 思考思考一般地,如果物体做变速直线运动,速度函一般地,如果物体做变速直线

11、运动,速度函数为数为 vv t, 那么我们也可以采用分割、 近似代, 那么我们也可以采用分割、 近似代替、求和、取极限的方法,利用“以不变代变”替、求和、取极限的方法,利用“以不变代变”的方法及无限逼近的思想,求出它在的方法及无限逼近的思想,求出它在a atb b内内所作的位移所作的位移S 结论结论一、定积分的定义一、定积分的定义 11( )( )nniiiibafxfn 小矩形面积和S=如果当如果当n时,时,S 的无限接近某个常数,的无限接近某个常数,这个常数为函数这个常数为函数f(x)在区间在区间a, b上的定积分,记作上的定积分,记作 ba (x)dx,即f (x)dx f ( i)xi

12、。 从求曲边梯形面积从求曲边梯形面积S的过程中可以看出的过程中可以看出,通过通过“四步四步曲曲”:分割分割-近似代替近似代替-求和求和-取极限得到解决取极限得到解决.1( )lim( )ninibaf x dxfnba即定积分的定义:定积分的相关名称:定积分的相关名称: 叫做积分号,叫做积分号, f(x) 叫做被积函数,叫做被积函数, f(x)dx 叫做被积表达式,叫做被积表达式, x 叫做积分变量,叫做积分变量, a 叫做积分下限,叫做积分下限, b 叫做积分上限,叫做积分上限, a, b 叫做积分区间。叫做积分区间。1( )lim( )ninibaf x dxfnba即Oabxy)(xfy

13、 baIdxxf)(iinixf )(lim10 被积函数被积函数被积表达式被积表达式积分变量积分变量积分下限积分下限积分上限积分上限 Sbaf (x)dx; 按定积分的定义,有按定积分的定义,有 (1) (1) 由连续曲线由连续曲线y y= =f f( (x x) () (f f( (x x) ) 0) 0) ,直线,直线x x= =a a、x x= =b b及及x x轴所围成的曲边梯形的面积为轴所围成的曲边梯形的面积为 (2) (2) 设物体运动的速度设物体运动的速度v v= =v v( (t t) ),则此物体在时间区间,则此物体在时间区间 a a, , b b 内运动的距离内运动的距离

14、s s为为 sbav(t)dt。 定积分的定义:定积分的定义:Oab( )vv ttv1( )lim( )ninibaf x dxfnba即112001( )3Sf x dxx dx根据定积分的定义右边图形的面积为1x yOf(x)=x213S 1SD2SD2( )2v tt= -+O Ov t t12gggggg3SDjSDnSD1n2n3njn1nn-4SD112005( )(2)3Sv t dttdt根据定积分的定义左边图形的面积为baf(x)dx f (t)dt f(u)du。 说明:说明: (1) 定积分是一个数值定积分是一个数值, 它只与被积函数及积分区间有关,它只与被积函数及积分

15、区间有关, 而与积分变量的记法无关,即而与积分变量的记法无关,即(2)定定义义中中区区间间的的分分法法和和 i的的取取法法是是任任意意的的. b ba af f( (x x) )dxdx b ba af f ( (x x) )dxdx - -(3)(3)(2)定积分的几何意义:定积分的几何意义:Ox yab yf (x)baf (x)dx f (x)dxf (x)dx。 xa、xb与 x轴所围成的曲边梯形的面积。 当 f(x)0 时,积分dxxfba)(在几何上表示由 y=f (x)、 特别地,当 ab 时,有baf (x)dx0。 当当f(x) 0时,由时,由y f (x)、x a、x b

16、与与 x 轴所围成的轴所围成的曲边梯形位于曲边梯形位于 x 轴的下方,轴的下方,x yOdxxfSba)(,dxxfba)(ab yf (x) yf (x)dxxfSba)(baf (x)dx f (x)dxf (x)dx。 S上述曲边梯形面积的负值。上述曲边梯形面积的负值。 定积分的几何意义:定积分的几何意义:积分 b ba af f ( (x x) )dxdx 在几何上表在几何上表示示 b ba af f ( (x x) )d dx x f f ( (x x) )d dx x f f ( (x x) )d dx x。 S Sab yf (x)Ox y( )yg x探究探究:根据定积分的几何

17、意义根据定积分的几何意义,如何用定积分表示图中阴影部分的如何用定积分表示图中阴影部分的面积面积?ab yf (x)Ox y1()baSfx dx( )yg x12( )( )bbaaS S Sf xdxg xdx 2( )baSg x dx三三: : 定积分的基本性质定积分的基本性质 性质性质1. 1. dx)x(g)x(fba babadx)x(gdx)x(f性质性质2. 2. badx)x(kf badx)x(fk三三: : 定积分的基本性质定积分的基本性质 定积分关于积分区间具有定积分关于积分区间具有可加性可加性 bccabadx)x(fdx)x(fdx)x(f 性质性质3. 3. 21

18、21 ccbccabadx)x(fdx)x(fdx)x(fdx)x(fOx yab yf (x)性质性质 3 不论不论a,b,c的相对位置如何都有的相对位置如何都有ab y=f(x)baf (x)dx f (x)dxf (x)dx。 f (x)dx f (x)dxf (x)dx。 f (x)dx f (x)dxbcf (x)dx。 cOx ybaf (x)dx f (x)dxf (x)dx。 例例1:利用定积分的定义:利用定积分的定义,计算计算 的值的值. 130 x d x例2.用定积分表示图中四个阴影部分面积积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(0)(12xfaxxf解:dxxAa200000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-1积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(21)(22xfxxf解:dxxA2210000ayxyxyxyx-12ab-12f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论