第13章《轴对称》导学案_第1页
第13章《轴对称》导学案_第2页
第13章《轴对称》导学案_第3页
第13章《轴对称》导学案_第4页
第13章《轴对称》导学案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人 宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.1轴对称(1)建议及反思课 时第 1 课时总第 课时执教时间年 月 日学习目标1理解轴对称图形及轴对称的定义,认识轴对称与全等的关系,了解轴对称图形与轴对称的联系与区别 。2通过独立思考、小组合作、展示质疑,发展学生的观察、归纳、想象能力。学习重、难点重点:对轴对称图形与轴对称概念的理解 难点:轴对称图形与轴对称的联系与区别学习过程四、导学过程:(一)合作探究(同学合作,教师引导)1、在一张半透明的纸上画ABC,使ABAC,作BC上的高AD,沿直线AD折叠,直线两旁的部分重合吗

2、?轴对称图形的定义: 叫做轴对称图形,这条直线叫做它的 2、在一张半透明的纸上建立一个平面直角坐标系,并描出点A(-1,3)、B(-2,-4)、C(-3,-1)、 A1(1,3)、B1(2,-4)、C1(3,-1),画出ABC和A1B1C1,沿y轴折叠,这两个三角形重合吗? 轴对称的定义: 那么就说这两个图形关于这条直线对称,这条直线叫做 ,折叠后重合的点是对应点,叫做 。3、第2中的ABC和A1B1C1全等吗?把其中的A1B1C1向下平移一个单位,得到A2B2C2,ABC和A2B2C2全等吗?折一折,ABC和A2B2C2成轴对称吗?轴对称与全等的关系:两个图形成轴对称,则它们一定 ;两个图形

3、全等, 成轴对称。4、你能说说轴对称图形与轴对称的区别和联系吗?区别: 联系: (二)、精讲精练 例1下列图案中,不是轴对称图形的是( )(A)(B)(C)(D)例2、下面四组图形中,右边与左边成轴对称的是( )A. B. C. D.例3、仔细观察下列图案,并按规律在横线上画出合适的图形 _ 例4、在镜中看到的一串数字是“”,则这串数字是 。例5、下列图形中对称轴最多的是 ( )A、圆 B、正方形 C、等腰三角形 D、线段(三)课堂练习1、在实际生活中,轴对称无处不在,请你用给定的图形“, ”(两个圆,两个三角形,两条线段)为构件,尽可能多地构思独特且有实际生活意义的成轴对称的一对图形,并写出

4、一两句诙谐、贴切的解说词。如: 两个棒棒糖 2、如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )3、 写出10个“轴对称”的汉字,如“十、中”。5、 课堂小结:轴对称图形及轴对称的定义关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.1轴对称(2)建议及反思课 时第 2 课时总第 课时执教时间年 月 日学习目标1、 了解线段的垂直平分线的定义,了解轴对称的性质及轴对称图形的性质,掌握垂直平分线的性质,了解线段垂直平分线的画法。2、 发展学生观察、归纳及推理能力。学习重、难点垂直平分线的性质学习过程四、导学过程A1B

5、1C1图1(一)合作探究(同学合作,教师引导)1、如图1,ABC和A1B1C1关于y轴对称,点A的对应点是 ,y轴经过线段AA1的中点吗?y轴垂直线段AA1吗?线段的垂直平分线的定义: ,叫做这条线段的垂直平分线。2、在图1中,y轴是线段CC1和BB1的垂直平分线吗?轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 。类似地,轴对称图形的性质:轴对称图形的对称轴,是 的垂直平分线。3、1)在一张半透明的纸上画线段AB,用量角器和刻度尺画线段AB的垂直平分线CD,在CD上任取一点P,连结PA、PB,量一量PA、PB的长,你有什么发现?沿直线CD对折,线段PA、PB

6、重合吗?垂直平分线的性质:线段垂直平分线上的点与这条线段 的距离相等。你能证明这个性质吗?2)、在一张纸上线段AB及点P1、P2,使P1A=P1B ,P2A=P2B,再画线段AB的垂直平分线CD,你又有什么发现?垂直平分线的性质:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。你能证明这个性质吗?3、 有一条线段AB,怎样用直尺和圆规作出它的垂直平分线?你能说说其道理吗?(二)、精讲精练 作出下列图形的对称轴。例2、如图,点P在AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F,若PEF的周长是20cm ,求线段MN的长。EDCBA例3、 AB

7、C中,DE是AC的垂直平分线,垂足为E,交AB于点D,AE=5cm,CBD的周长为24cm,求ABC的周长。(三)课堂精练:某地有两所大学和两条相交叉的公路,如图所示(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.(1)你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;N·M·BOA(2)阐述你设计的理由. 五、课堂小结:垂直平分线的定义,轴对称的性质及轴对称图形的性质关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人 宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.21

8、作轴对称图形建议及反思课 时第 3 课时总第 课时执教时间年 月 日学习目标1、 能作轴对称图形,能应用轴对称进行简单的图案设计,能用轴对称的知识解决相应的数学问题。2、 通过独立思考、交流讨论、展示质疑,发展学生的观察、归纳、想象及推理能力。学习重、难点重点:作轴对称图形 难点:用轴对称知识解决相应的数学问题。学习过程(一)合作探究(同学合作,教师引导)1、 复习回顾:线段公理;垂直平分线的性质。2、 自己动手在一张半透明的纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置并重复几次,你又得到了什么?归纳:(1) 由一个平面图形可以得到它关于一条直线l成轴对称的图

9、形,这个图形与原图形的、_完全相同; (2)新图形上的任意一点,都是原图形上某一点关于直线l的_; (3)连接任意一对对应点的线段被对称轴_。3、把图1补成关于直线l对称的图形··ABl图2l图1(二)、精讲精练 例1、如图2,如何在直线l上找一点P,使线段PA与PB的和最小?练习:1、把下列各图补成以a为对称轴的轴对称图形。aaa例2、要在河边修建一个水泵站,分别向张村、李庄送水(如图)。 修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由。BC 。.D. 。.OA练习1. 城北中学八班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面

10、上摆满了桔子,OB桌面上摆满了糖果,站在C处的学生小明先到AO桌面上拿桔子,再到OB桌面上拿糖果,然后回到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短。 五、课堂小结:归纳: 几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人 宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.2.2用坐标表示轴对称建议及反思课 时

11、第 4课时总第 课时执教时间年 月 日学习目标1、 掌握一个点关于x轴或y轴对称的点的坐标变化规律,并能利用这种坐标的变化规律在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。2、 培养学生探索问题的能力, 发展学生数形结合的思维意识。学习重、难点重点:1理解图形上的点的坐标的变化与图形的轴对称变换之间的关系 2在用坐标表示轴对称时发展形象思维能力和数形结合的意识难点:用坐标表示轴对称学习过程图一(一)、合作探究(同学合作,教师引导)1如图一(1)观察上图中两个圆脸有什么关系? (2)已知右边圆脸右眼B的坐标为(4,3),左眼A的坐标为(2,3),嘴角两个端点,右端点C的坐标为(4,1)

12、,左端点D的坐标为(2,1)请根据图形写出左边圆脸上左眼,右眼及嘴角两端点的坐标A1_; B1_; C1_; D1_(3)A与A1、B与B1、C与C1、D与D1分别关于_对称。(二)、精讲精练 例1、将一个点的纵坐标不变,横坐标乘以-1,得到的点与原来的点的位置关系是 ;将一个点的横坐标不变,纵坐标乘以-1,得到的点与原来的点的位置关系是 。例2、已知点A(m+2,3)、B(-5,n+6)关于y轴对称,则m= ,n= 例3、若点P(a,3)和P1(2,b)关于x轴对称,则方程ax+b=0的解为 。例4、已知点A(2m+1,m-3)关于y轴的对称点在第四象限,则m的取值范围是 。例5、若3a-2

13、+(b+3)2=0,点A(a,b)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是 。y12O1-1ABC例6、(1)请画出关于轴对称的(其中分别是的对应点,不写画法);(2)直接写出三点的坐标(3)ABC的面积为 (三)课堂练习:oxyRQPnm1、 如图,每个小正方形的边长都是1,分别作出PQR关于直线x=1(记为m)和直线y= 1(记为n)对称的图形。它们的对应点的坐标之间分别有什么关系?2、若点P(a,b)、Q(c,d)两点关于直线x=2对称,则a、c间的关系是 ,b、d间的关系是 ;若点P(a,b)、Q(c,d)两点关于直线y= 2对称,则a、c间的关系是 , b、d间

14、的关系是 。五、课堂小结:1、点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y) 2、对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人 宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.3.1等腰三角形(1)建议及反思课 时第 5 课时总第 课时执教时间年 月 日学习目标1、 巩固等腰三角形的概念,掌握等腰三角形的性质,并能灵活应用等腰三角形的性质解决一些实际问题。2、 通过独立思考,交流合作,体会探

15、索数学结论的过程,发展推理能力。学习重、难点学习重点:等腰三角形性质的探索及应用 学习难点:等腰三角形性质的应用学习过程(一)合作探究(同学合作,教师引导)1、复习回顾:.三角形全等的判定方法 .有两条边相等的三角形,叫叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角2、用剪刀按照49页介绍的方法,剪出一个等腰三角形,想一想,它是轴对称图形吗?如果是,它的对称轴是什么?3、将2中的等腰三角形沿对称轴对折,找出重合的线段和角,由此你发现了等腰三角形的哪些性质?性质1:等腰三角形的两个底角相等(简写成“等边对等角”);ACBD图1性质2:等腰三角形

16、的顶角平分线、底边上的中线、底边上的高相互重合。你能证明这两个性质吗? 4、填空:如图1,在ABC中AB=AC,BAD=CAD BD = , 。AB=AC,BD=CD BAD= , .AB=AC,ADBC BAD= , BD= . 图2DCBA(二)、精讲精练例1、如图2,在ABC中,AB=AC,点D在AC上,且BD=BC=AD.求ABC各角的度数。.图3EDCBA例2、已知一个等腰三角形两个内角的度数之比为1:4,则这个等腰三角形顶角的度数为 。例3、如图3,在ABC中,AB=AC,点D、E在BC上,且AD=AE.求证:BD=CE图4EDCBAM练习:1、如图4,AB=AE,BC=DE,B=

17、E,AMCD,垂足为点M求证:CM=DM 图5BFDAEC2、等腰三角形一腰上的高和另一腰的夹角为40o,则底角为 。3、如图5,在ABC中,AB=AC,A=30o,BF=CE,BD=CF,求DFE的度数。五、课堂小结:腰三角形的哪些性质?性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人 宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.3.1等腰三角形(2)建议及反思课 时第 6 课时总第 课时执教时间年 月 日学习目标1、 掌握等腰三角形的判定方法,

18、并能灵活运用解决实际问题;2、 通过独立思考,交流讨论,发展推理能力和运用数学知识解决实际问题的能力;3、 极度热情,高度责任,享受学习的快乐;学习重、难点学习重点:等腰三角形的判定方法 学习难点:等腰三角形的判定和性质的区别,等腰三角形的判定的应用。学习过程四、导学过程:(一)合作探究(同学合作,教师引导)1、复习回顾:等腰三角形的性质,平行线的性质,三角形全等的判定2、用直尺和量角器画ABC,使B=C,再用刻度尺量一量线段AB、AC的长,你有什么发现?CBA猜想:如果一个三角形有两个角相等,那么这两个角所对的边也想等。你能验证2中的猜想吗?3、已知:如图 在ABC中,B=C求证:AB=AC

19、 等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也想等(简写成:等角对等边”)。4、 等腰三角形的性质与判定有什么区别和联系?区别: 联系:(二)、精讲精练ABCDO例1.如图,AC和BD相交于点O,且ABDC,OC=OD,求证:OA=OB例2.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。DCBAEDCBA(三)精练:1.如图,在ABC中,AB=AC,B=36O,D、E是BC上的两点,且ADE=AED=2BAD,则图中的等腰三角形共有( )个。A.3个 B.4个 C.5个 D.6个ACBFEO2.如图,ABC中,ABC与ACB的平分线

20、交于点O,过点O作EFBC,交AB于点E,交AC于点F求证:EF=EB+FC.五、 课堂小结:等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也想等(简写成:等角对等边)关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人 宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.3.2等边三角形(1)建议及反思课 时第 课时总第 课时执教时间年 月 日学习目标1、 理解并掌握等边三角形的定义,探索等边三角形的性质和判定方2、 2、能够用等边三角形的知识解决相应的数学问题学习重、难点学习重点:等边三角形判定定理的发现与证明学习难点:等边三角形性质和判定的应用学习过程

21、(一)合作探究(同学合作,教师引导)1、等腰三角形的性质:(1)等腰三角形的 相等(2)等腰三角形 、 、 互相重合2、等腰三角形中有一种特殊的等腰三角形是 三角形,即 叫等边三角形。3、思考:(1)把等腰三角形的性质(等腰三角形的两个底角相等)用到等边三角形,能得到什么结论?(2)一个三角形满足什么条件就是等边三角形?(3)你认为有一个角等于60°的等腰三角形是等边三角形吗?归纳:(1)等边三角形的性质:等边三角形的 (2)等边三角形的判定: (二)、精讲精练 精讲:例1、如图,ABC是等边三角形,DEBC,交AB,AC于D,E。求证ADE是等边三角形。例2、探究:等边三角形三条中

22、线相交于一点。画出图形,找出图中所有的全等三角形,并证明它们全等。精练:教材P54练习第1、2题(完成于书上)五、课堂小结:等边三角形的性质、判定关兴中学 八 年级数学科导学案主 备 人夏钦臣参 与 人 宋光雨 付正常 毛静实施班级八( )班审 核 人课 题13.3.2等边三角形(2)建议及反思课 时第 课时总第 课时执教时间年 月 日学习目标1. 掌握含30o角的直角三角形的性质,并能灵活运用这一性质解决实际问题。2. 培养学生的推理能力和数学语言表达能力3. 感受数学的严谨性,激发学生的好奇心和求知欲。学习重、难点重点:含30°角的直角三角形的性质定理的证明与运用难点:含30&#

23、176;角的直角三角形的性质定理的证明。学习过程(一)合作探究1. 复习回顾:等边三角形的性质与判定2. 问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由3. 由2你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能用不同于课本上的方法证明你的结论吗?4. 由3,我们得到下面的性质定理:CBA在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。5. 填空:如右图,在ABC中,C=90o,A=30o BC= ( ) (二)、精讲精练例1、如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,A=30°,立柱BC、DE要多长?例2、等腰三角形的底角为15°,腰长为2a,则腰上的高为 。(三)课堂精练:1. 已知:如图,ABC中,ACB=90°,CD是高,A=30°求证:BD=ABPFEDCBA2. 如图,ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BFAE于点F求证:BP=2PF 五、课堂小结直角三角形中,30度叫所对直角边等于斜边的一半六、作业PDCBAEF1、如图:等边三角形ABC的边长为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论