版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 等差数列(第一课时)教学设计 姓名:陈玉兰 学号:20110514605 姓名:江军 学号;20110512863 姓名:周超 学号:20110512904一、教材分析(一)本节课主要研究等差数列的概念、通项公式及其应用,是本章的重点内容之一。而所处章节数列又是高中数学的重要内容,并且在实际生活中有着广泛的应用,它起着承前启后的作用。(二)并且数列与前面学习的函数等知识有密切的联系,学习数列又为进一步学习数列的极限等内容作好了准备。同时也是培养学生数学能力的良好题材。学习数列要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题。等差数列是学生探究特殊数列的开始,它对后续内
2、容的学习,无论在知识上,还是在方法上都具有积极的意义。二、学情分析(一)认知结构 在学习等差数列之前,同学们已经学习了数列的概念,明白了什么是数列的通项公式,什么是递推公式。并且也已经初步接触了研究数列的方法,如猜想归纳、迭代累加等,在有了函数的基础知识之上,等差数列的应用就变得比较易懂具体。(二)情感结构 等差数列是研究特殊数列的开始,一个好的开始是非常重要的。所以在教学设计中应该多角度体现研究数列的方法,增加学生对数列的兴趣,减少枯燥死板的概念学习惯性。并且随着年龄的增大,阅历的丰富,高中学生自主意识的增强,有独立思考问题、发现问题的能力.故在学生的探索活动中,主动通过设疑、质疑、提示等启
3、发示手段,帮助他们分析问题,激发学生的学习的兴趣.三、教学目标(一)知识与技能目标 1.理解等差数列的定义及等差中项的定义 2. 掌握等差数列的通项公式及推广后的通项公式 3.灵活运用等差数列,熟练掌握知三求一的解题技巧(2) 过程与方法目标 1.培养学生观察能力 2.进一步提高学生推理、归纳能力 3.培养学生合作探究的能力,灵活应用知识的能力(三)情感态度与价值观目标 1.体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神; 2.渗透函数、方程、化归的数学思想; 3.培养学生数学的应用意识,参与意识和创新意识。四、教学重难点(一)重点1、等差数列概念的理解与掌握; 2、等差数列
4、通项公式的推导与应用。 (二)难点 1、等差数列的应用及其证明五、教学过程(一) 背景问题,创设情景 上节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映了数列的特点。下面请同学们观察两个表格的数据并进行填空。思考问题(一):在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星,请问你能预测出下次人类观测哈雷彗星的时间吗?1682,1758,1834,1910,1986,( 2062 )特点:后一次观测时间比前一次观测时间增加了76年我们把这些数据写成数列的形式:1682,1758,1834,1910,1986,2062.思考问题(二):通常情况
5、下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表填写处空格处的信息吗?高度h(km)1234567.9温度t(°)2821.5158.52(-4.5)(-11).(-24)特点:高度每增加一千米,温度就降低6.5度。我们把表格中的数据写成数列的形式:28, 21.5, 15, 8.5, 2, , -24.学生活动(1):学生观察下列三个数列具有怎样的共同特征:(1)1682,1758,1834,1910,1986,2062.(2)28, 21.5, 15, 8.5, 2, , -24.(3)1,1,1,1,1,1,1,1,1,1.共同特征:1.后一项与它
6、的前一项的差等于一个定常数。 2.这个常数可以为正为负,还可以为零。(二) 新知概念,例题讲解1. 等差数列的定义: 如果一个数列从第2项起,它的每一项与它的前一项的差都等于同一个常数,那么我们就称这个数列为等差数列.要点:(1)从第二项起; (2) (3)同一常数c。2.公差:这个常数叫做等差数列的公差,公差通常用 “d ”来表示.请同学们大声说出上例三个等差数列的公差为多少(1) d=76 (2)d=-6.5 (3)d=0例1.下列数列是等差数列吗?为什么?(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10.(2) 5,5,5,5,5,5,(3) 4,7,10,13,16,
7、19,20,23.例2.数列3n-5是等差数列吗?如果是,请给以证明;如果不是,请说明理由。3. 等差数列的通项公式学生活动(2): 你能根据规律填空吗?(1)1,4,7,10,13,16,( ),( )(2) 你能求出(1)中的吗?答案:等差数列通项公式的推导过程:探索、猜想、证明如果一个数列老师引导过程: 即: 即: 即: 由此可得: (n2)当n=1时,等式也是成立,因而等差数列的通项公式 (nN*)学生活动(3): 请同学们思考:你还能找到证明等差数列通项公式的方法吗? 同学(一): 教师小结:大部分学生用不完全归纳法,通过个别同学补充叠加法与拆项法,从而得到等差数列 的通项公式为:
8、(n2),其中a1 是这个数列的首项, d 是公差。4. 例题讲解(1) 类型:在等差数列通项公式中,有四个量, 知道其中的任意三个量,就可以求出另一个量,即知三求一 .(2) 等差数列的函数意义:等差数列由一次函数中某些特殊的点组成。(详见ppt)趁热打铁练一练:活动问题:等差数列中a1 =1,d=2,数列的通项公式是什么?(an=2n-1) 那么要求等差数列的通项公式只需求什么?(a1和d)学生活动(4): 同学自己编出已知等差数列的首项和公差求通项公式的问题并解决。 通过学生自己亲自尝试、体验,才能深刻理解等差数列的定义及通项公式,对学困生来讲,这样才能打好基础,这样安排即符合教学论中的
9、巩固性原则,也符合素质教育理论中面向全体的基本要求。例3:求等差数列8,5,2的第20项。导析:由a1=8,d=5-8=-3,n=20得,a20=8+(20-1)×(-3)=-49例4.-401是不是等差数列-5,-9,-13的项?如果是,是第几项?导析:由得数列通项公式为:=-4n-1由题意可知,本题是要回答是否存在正整数n,使得-401=-4n-1成立,解之得n=100,即-401是这个数列的第100项。变式训练:如果已知等差数列中任意两项,能不能求出an呢? 学生:举例:在等差数列an中,已知a5=10,a12=31,求an 。 解: a1 +4d=10 a1 +11d=31解
10、得 a1=-2 ,d=3,则an=3n-5教师:此解法是利用数学的函数与方程的思想,函数与方程的思想是重要的数学思想方法之一,应熟练掌握。问:由a5=a1 +4d ,a12=a1 +11d能够有什么启示?生:a12=a1 +11d=a5+(12-5)d,于是有an=am+(n-m)d,(等差数列通项公式的推广公式)上题可先求出d=3,那么an= a5+(n-5)d= a12+(n-12)d=3n-5例5. 在等差数列an中(1) 解:由等差数列推广的通项公式得: (2) 解: (3) 解: (三)形成检测,反馈回授1、 求等差数列3,7,11,的
11、第4项与第10项。2、100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由。3、-20是不是等差数列0, -3.5, -7,的项?如果是,是第几项?如果不是,说明理由。4、 已知a4=10,a7=19,求a1与d。5、已知a3=9,a9=3,求a12 (四)课时小结,反思巩固学生活动5:这节课你们学到了什么?教师鼓励学生积极回答,答不完整的没有关系,其它同学补充。以此培养学生的口头表达能力,归纳概括能力。并用多媒体把学生的归纳用一张表展示出来。生:(1)等差数列定义:即(n2) 或an+1- an = d (nN*) (2)等差数列通项公式 :(nN*) 推导出公式:
12、(3)等差数列通项公式的应用:知三求一(5) 知识延伸,作业布置思考题:第15届现代奥运会于1952年在芬兰赫尔辛基举行,每4年举行一次。奥运会如因故不能举行,届数照算。(1)试写出由举行奥运会的年份构成的数列的通项公式。(2)2008年北京奥运会是第几届?(3)2050年举行奥运会吗?作业: 习题1、2、3、4六:板书设计等差数列一、定义1(n2)二、 通项公式1公式推导过程例题讲解七、教后反思新课堂是活动的课堂,讨论合作交流的课堂,德育教育的课堂,应用现代技术的课堂。本节课的设计,把提出问题与解决问题、独立思考与合作交流等有机结合起来,从而使教学和谐有序地展开。在教学过程中,学生的知识结构
13、被建构,数学思想方法被激活,创新意识被唤起。学生课后的评价是:有新鲜感,生动有趣,思路开阔。最大的感悟是学生的学习潜能是无穷的,只要我们积极地去开发引导,他们的智慧必定会放出耀眼的光芒,从而为数学教学增光添彩。八、教学流程图学生活动1导入新课背景问题创设情境课后探究举一反三巩固加强整体把握布置作业知识小结例题精解新知概念问题1问题2 作业1 作业2 思考题1.等差数列定义2.等差数列通项公式3.推广的通项公式 4.知三求一应用学生活动4学生活动5 等差数列定义:例1、2 通项公式: 例3、4 推广公式: 例5变式训练1.当堂检测一2.当堂检测二学生活动2学生活动31.通项公式推导探究过程2.思
14、想:累加、迭代3.等差数列与一次函数关系4.等差数列通项公式的应用 1.等差数列定义 2.通项公式的推导 3.推广的通项公式小组合作说明小组成员:陈玉兰 江军 周超小组选题:我们小组统一觉得应该准备高中知识的教学设计,于是我们翻阅了人教A版的必修教科书,列出了那些课程属于概念课,例如:函数的定义及其系列性质、指对数函数、三角函数及向量、等差等比数列等知识,考虑到平时我们接触比较少的知识,小组决定做等差数列的教学设计;分工及组员贡献情况:教学设计:由周超设计教材分析、学情分析、教学目标三个版块的内容; 由陈玉兰设计重难点、教学环节两个版块的内容; 由江军设计教学板书、教学反思及教学流程图三个板块
15、的内容; 最后三人各检查一遍,提出需要修改的地方,进一步完善教学设计。课间制作:在教学设计修改完毕的情况下,根据教学设计的目标和内容,陈玉兰和江军一 起做,然后由周超修改。 教学设计过程: 在进行教学设计之前,我们小组三个人聚在一起讨论了等差数列教学的思想和方法,怎样入手设计教学设计,理出本节课的重点知识,在教学环节的设计上,应该注重哪些知识的突出,应该选择怎样的教法,在例题选择上应该凸显哪些知识和做题技巧。 在教学设计过程中,我们分版块各自完成自己的任务,然后由陈玉兰做好各个板块的衔接,调整教学设计的格式,使之美观大方,突出重点。 初稿拿出后,再由各个组员都修改一次。教学设计的特色:(1)等差数列属于概念课,相对比较抽象,我们
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准合作合同模板版B版
- 2024年版:连锁餐饮品牌特许经营合同
- 2024-2025学年八年级地理上册 2.3 气候类型复杂多样教学实录 (新版)粤教版
- 上海高层房屋租赁合同
- 六盘水师范学院《高分子加工与成型》2023-2024学年第一学期期末试卷
- 2024年二零二四年度旅游大巴租赁与团队保险及住宿预订合同3篇
- 上海市房屋租赁协议书
- 2024年环保设备采购与技术升级改造合同
- 2024兽药电商平台运营与销售合同3篇
- 2024版储能设备箱涵建设劳务分包执行协议6篇
- 手术室的人文关怀
- 2024合作房地产开发协议
- 农贸市场通风与空调设计方案
- 第25课《周亚夫军细柳》复习课教学设计+2024-2025学年统编版语文八年级上册
- 2024年广东省深圳市中考英语试题含解析
- 金蛇纳瑞2025年公司年会通知模板
- GB/T 16288-2024塑料制品的标志
- 四年级英语上册 【月考卷】第三次月考卷(Unit 5-Unit 6) (含答案)(人教PEP)
- 某某市“乡村振兴”行动项目-可行性研究报告
- 中国航空协会:2024低空经济场景白皮书
- 第七单元 条形统计图 条形统计图(一) (同步练习)-2024-2025学年人教版数学四年级上册
评论
0/150
提交评论