![理论力学5—摩擦-改_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/759d7cea-424f-473f-a2f4-e25af60efa0e/759d7cea-424f-473f-a2f4-e25af60efa0e1.gif)
![理论力学5—摩擦-改_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/759d7cea-424f-473f-a2f4-e25af60efa0e/759d7cea-424f-473f-a2f4-e25af60efa0e2.gif)
![理论力学5—摩擦-改_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/759d7cea-424f-473f-a2f4-e25af60efa0e/759d7cea-424f-473f-a2f4-e25af60efa0e3.gif)
![理论力学5—摩擦-改_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/759d7cea-424f-473f-a2f4-e25af60efa0e/759d7cea-424f-473f-a2f4-e25af60efa0e4.gif)
![理论力学5—摩擦-改_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/759d7cea-424f-473f-a2f4-e25af60efa0e/759d7cea-424f-473f-a2f4-e25af60efa0e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5.1 滑动摩擦5.2 摩擦角和自锁现象5.3 考虑摩擦的平衡问题5.4 滚动摩擦第五章 摩 擦摩擦的类别:摩擦的类别:干摩擦固体对固体的摩擦。流体摩擦流体相邻层之间由于流速的不同而引起的切向力。滑动摩擦由于物体间相对滑动或有相对滑动趋势引起的摩擦。滚动摩擦由于物体间相对滚动或有相对滚动趋势引起的摩擦。 当两个相互接触的物体具有相对滑动或相对滑动趋势时,彼此间产生的阻碍相对滑动或相对滑动趋势的力,称为滑动摩擦力。摩擦力作用于相互接触处,其方向与相对滑动的趋势或相对滑动的方向相反,它的大小根据主动力作用的不同,可以分为三种情况,即静滑动摩擦力,最大静滑动摩擦力和动滑动摩擦力。若仅有滑动趋势而没有
2、滑动时产生的摩擦力称为静滑动摩擦力;若存在相对滑动时产生的摩擦力称为动滑动摩擦力。5.1 滑动摩擦在粗糙的水平面上放置一重为P的物体,该物体在重力P和法向反力FN的作用下处于静止状态。今在该物体上作用一大小可变化的水平拉力F,当拉力F由零值逐渐增加但不很大时,物体仍保持静止。可见支承面对物体除法向约束反力FN外,还有一个阻碍物体沿水平面向右滑动的切向力,此力即静滑动摩擦力,简称静摩擦力,常以FS表示,方向向左,如图。5.1.1 静滑动摩擦力及最大静滑动摩擦力FNPFNPFSF静摩擦力的大小随水平力F的增大而增大,这是静摩擦力和一般约束反力共同的性质。静摩擦力又与一般约束反力不同,它并不随力F的
3、增大而无限度地增大。当力F的大小达到一定数值时,物块处于将要滑动、但尚未开始滑动的临界状态。这时,只要力F再增大一点,物块即开始滑动。当物块处于平衡的临界状态时,静摩擦力达到最大值,即为最大静滑动摩擦力,简称最大静摩擦力,以Fmax表示。此后,如果F再继续增大,但静摩擦力不能再随之增大,物体将失去平衡而滑动。这就是静摩擦力的特点;5.1.1 静滑动摩擦力及最大静滑动摩擦力FNPFSF0:0 xSSFFFFFmax0sFF综上所述可知,静摩擦力的大小随主动力的情况而改变,但介于零与最大值之间,即 由实验证明:最大静滑动摩擦力的大小与两物体间的法向反力的大小成正比,即:maxsNFf F这就是静滑
4、动摩擦定律。式中fs称为静滑动摩擦系数。静摩擦定律(库仑摩擦定律)静摩擦系数的大小需由实验测定。它与接触物体的材料和表面情况(如粗糙度、温度和湿度等)有关,而与接触面积的大小无关。5.1.2 动滑动摩擦定律当滑动摩擦力已达到最大值时,若主动力F再继续加大,接触面之间将出现相对滑动。此时,接触物体之间仍作用有阻碍相对滑动的阻力,这种阻力称为动滑动摩擦力,简称动摩擦力,以Fd表示。实验表明:动摩擦力的大小与接触体间的正压力成正比,即dNFf F式中f是动摩擦系数,它与接触物体的材料和表面情况有关。动摩擦力与静摩擦力不同,没有变化范围。一般情况下,动摩擦系数小于静摩擦系数,即 f fs。5.1.2
5、动滑动摩擦定律 实际上动摩擦系数还与接触物体间相对滑动的速度大小有关。对于不同材料的物体,动摩擦系数随相对滑动的速度变化规律也不同。多数情况下,动摩擦系数随相对滑动速度的增大而稍减小,但当相对滑动速度不大时,动摩擦系数可近似地认为是个常数。5.2.1 摩擦角 当有摩擦时,支承面对平衡物体的反力包含法向反力FN和切向摩擦力Fs ,这两个力的合力称为支承面的全约束反力,即FR= FN + Fs ,它与支承面间的夹角j将随主动力的变化而变化,当物体处于临界平衡状态时,j角达到一最大值jf。全约束力与法线间的夹角的最大值j f称为摩擦角。5.2 摩擦角和自锁现象FNFsFRjFNFmaxFRjjf由图
6、可知,角jf与静滑动摩擦系数f的关系为:maxsNfsNNtanFf FfFFj5.2.1 摩擦角即:摩擦角的正切等于静摩擦系数。可见,摩擦角与摩擦系数一样,都是表示材料的表面性质的量。FNFmaxFRjjf当物块的滑动趋势方向改变时,全约束反力作用线的方位也随之改变;在临界状态下,FR的作用线将画出一个以接触点A为顶点的锥面,称为摩擦锥。设物块与支承面间沿任何方向的摩擦系数都相同,即摩擦角都相等,则摩擦锥将是一个顶角为2jf的圆锥。5.2.1 摩擦角 5.2.2 自锁现象物块平衡时,静摩擦力不一定达到最大值,可在零与最大值Fmax之间变化,所以全约束反力与法线间的夹角j也在零与摩擦角jf之间
7、变化,即由于静摩擦力不可能超过最大值,因此全约束反力的作用线也不可能超出摩擦角以外,即全约束反力必在摩擦角之内。f0jjFNFmaxFRjjfqjfjfjfFRFRAAj (1)如果作用于物块的全部主动力的合力FR的作用线在摩擦角jf之内,则无论这个力怎样大,物块必保持静止。这种现象称为自锁现象。因为在这种情况下,主动力的合力FR与法线间的夹角q jf,因此, FR和全约束反力FRA必能满足二力平衡条件,且q j j f,而j j f ,支承面的全约束反力FRA和主动力的合力FR不能满足二力平衡条件。应用这个道理,可以设法避免发生自锁现象。斜面的自锁条件是斜面的倾角小于或等于摩擦角。斜面的自锁
8、条件就是螺纹的自锁条件。因为螺纹可以看成为绕在一圆柱体上的斜面,螺纹升角a就是斜面的倾角。螺母相当于斜面上的滑块A,加于螺母的轴向载荷P,相当物块A的重力,要使螺纹自锁,必须使螺纹的升角a小于或等于摩擦角jf。因此螺纹的自锁条件是faj5.2.2 自锁现象5.3 考虑摩擦的平衡问题考虑摩擦时,求解物体平衡问题的步骤与前几章所述大致相同,但有如下的几个特点:(1)分析物体受力时,必须考虑接触面间切向的摩擦力Fs,通常增加了未知量的数目;(2)为确定这些新增加的未知量,还需列出补充方程,即Fs fsFN,补充方程的数目与摩擦力的数目相同;(3)由于物体平衡时摩擦力有一定的范围(即0FsfsFN),
9、所以有摩擦时平衡问题的解亦有一定的范围,而不是一个确定的值。工程中有不少问题只需要分析平衡的临界状态,这时静摩擦力等于其最大值,补充方程只取等号。有时为了计算方便,也先在临界状态下计算,求得结果后再分析、讨论其解的平衡范围。P129思考题5-7:分析后轮驱动的汽车前、后轮摩擦力的方向。后轮F2FN2A前轮F1FN1APFMPF例1、重G=100N的物体,放在倾角 的斜面上,已知物块与斜面的摩擦系数f=0.2。试问在物块上作用一水平推力F=60N,物块能否平衡?并求摩擦力的大小及方向。F030aa aPF 解解1:(解析法):(解析法) 以物块为研究对象,当物块处于以物块为研究对象,当物块处于向
10、下向下滑动滑动的临界平衡状态时,受力如图,建立如的临界平衡状态时,受力如图,建立如图坐标。图坐标。minFP1NFmax1Fxy0sincos:0max1minaaPFFXmin10:sincos0NYFFPaa1max1NFfF例例2 将重为将重为P的物块放在斜面上,斜面倾的物块放在斜面上,斜面倾角角 大于接触面的摩擦角大于接触面的摩擦角 (如图),(如图),已知静摩擦系数为已知静摩擦系数为 f ,若加一水平力,若加一水平力 使使物块平衡,求力物块平衡,求力 的范围。的范围。amjFF联立求解得:联立求解得:PffFaaaasincoscossinminPxymaxFmax2F2NF 当物块
11、处于当物块处于向上滑动向上滑动的临界平衡状态时,的临界平衡状态时,受力如图,建立如图坐标。受力如图,建立如图坐标。0sincos:0max2maxaaPFFXmax20:sincos0NYFFPaa2max2NFfF联立求解得:联立求解得:PffFaaaasincoscossinmax故力故力 应满足的条件为:应满足的条件为:FPffFPffaaaaaaaasincoscossinsincoscossinminFP1RFmjminF1RFPmjaPmaxFmj2RF2RFmaxFPmja 解解2:(几何法):(几何法) 当物体处于向下滑动的临界平衡状当物体处于向下滑动的临界平衡状态时,受力如图
12、,可得力三角形如图。态时,受力如图,可得力三角形如图。由力三角形可得:由力三角形可得:)(minmPtgFja 当物体处于向上滑动的临界平衡状当物体处于向上滑动的临界平衡状态时,受力如图,可得力三角形如图。态时,受力如图,可得力三角形如图。由力三角形可得:由力三角形可得:故力故力 应满足的条件为:应满足的条件为:F)()(mmPtgFPtgjaja将上式展开亦可得同上结果。将上式展开亦可得同上结果。)(maxmPtgFjaaPABa例例3 梯子梯子AB长为长为2a,重为,重为P,其一端置于水,其一端置于水平面上,另一端靠在铅垂墙上,如图。设梯平面上,另一端靠在铅垂墙上,如图。设梯子与地和墙的静
13、摩擦系数均为子与地和墙的静摩擦系数均为 ,问梯子与,问梯子与水平线的夹角水平线的夹角 多大时,梯子能处于平衡?多大时,梯子能处于平衡?fPABNAFNBFAFBFxymina解解1:(解析法)以梯子为研究对象,当梯:(解析法)以梯子为研究对象,当梯子处于向下滑动的临界平衡状态时,受力子处于向下滑动的临界平衡状态时,受力如图,此时如图,此时 角取最小值角取最小值 。建立如图坐。建立如图坐标。标。amina0:0ANBFFX(1)0:0PFFYBNA(2):0)(FmA0sin2cos2cosminminminaaaaFaFPaNBB(3)梯子下滑的趋势是肯定的由摩擦定律:由摩擦定律:NAAfFF
14、 (4)NBBfFF (5)将式(将式(4)、()、(5)代入()代入(1)、()、(2)得:)得:NANBfFFNBNAfFPF即可解出:即可解出:21fPFNA21ffPFNBPABNAFNBFAFBFxymina故故 应满足的条件是:应满足的条件是:amja222此条件即为梯子的自锁条件。此条件即为梯子的自锁条件。将将 代入(代入(2)求出)求出 ,将,将 和和 代入(代入(3),得:),得:NAFBFBFNBF0sin2coscosminmin2minaaaff将将 代入上式,解出:代入上式,解出:mtgfj)2(22122minmmmmtgctgtgtgtgjjjja解解2:(几何法
15、):(几何法) 当梯子处于向下滑动的临界平衡当梯子处于向下滑动的临界平衡状态时,受力如图,显然状态时,受力如图,显然 ,于是于是RBRAFFPABminaCmjmjRAFRBFEmmmACECAEjjja2222min故故 应满足的条件是:应满足的条件是:amja222例例4 凸轮机构如图5-6(a)所示。已知推杆与滑道间的摩擦系数为fS,滑道宽度为b。设凸轮与推杆接触处的摩擦忽略不计。问a为多大,推杆才不致被卡住取推杆为研究对象。受力如图(b)所示解解:0 X0Y0)(FDM两个补充条件NAsAAFfFFmaxNBsBBFfFFmaxNNBNAFFF0FFFBA022dFdFbFFaABNB
16、代人式得NsBAFfFFFmax由式得max2FF 最后代人式,解得sfba2max当a增大时,相当在推杆上增加一个逆针向转动的力偶,从而增加了A、B两处的正压力,加大最大摩擦力,系统仍将保持平衡。反之,如力F左移,将减小最大摩擦力,系统不能平衡,推杆向上滑动。可知推杆不致卡住的条件应是sfba2本题也可应用摩擦角概念用几何法求解例例3 在用铰链在用铰链 O 固定的木板固定的木板 AO和和 BO间放一重间放一重 W的匀质圆柱的匀质圆柱, 并用大并用大小等于小等于P的两个水平力的两个水平力P1与与 P2维持维持平衡平衡,如图所示如图所示。设圆柱与木板间设圆柱与木板间的摩擦系数为的摩擦系数为 f
17、, 不计铰链中的摩不计铰链中的摩擦力以及木板的重量擦力以及木板的重量,求平衡时求平衡时P的的范围范围。2dP1P2ABCDWO2q ( 分析:分析:P小,下滑;小,下滑; P大,上滑大,上滑)解解:(1)求求P的极小值的极小值F1F2CDWOFN1FN2设圆柱处于下滑临界状态设圆柱处于下滑临界状态,画受力图画受力图.由对称性得由对称性得:FN1 = FN2 = FNF1 = F2 = F联立联立(1)和和(2)式得式得:qqcosfsin2WN Fy = 00sin2cos2WFFNqq(1)F=fN (2) 取取OA板为研究对象画受力图,此时的水平力板为研究对象画受力图,此时的水平力有极小值
18、有极小值Pminqqcosfsind2WrPmin(2)求求P的极大值的极大值当当P达到极大值时达到极大值时,圆柱处于上滑临界状态圆柱处于上滑临界状态.只要改变受力图只要改变受力图中摩擦力的指向和改变中摩擦力的指向和改变 F 前的符号即可前的符号即可.P1FN1 ACOF1 q qFxFyOim (F) = 00min1qqdctgPrctgFNF1F2CDWOFN1FN2P1FN1 ACOF1 q q mO(Fi) = 0)cos(sin2qqfWFN0max1qqdctgPrctgFN用摩擦角用摩擦角j j表示得表示得:qqcosfsind2WrPmaxqqqqcosfsind2WrPco
19、sfsind2WrjqjjqjsindcosWrPsindcosWr 当角当角j j等于或大于等于或大于q q时时,无论无论P多大多大,圆柱不会向上滑圆柱不会向上滑动而产生自锁现象动而产生自锁现象.例重例重W的方块放在水平面上,并有一水平力的方块放在水平面上,并有一水平力P作用。设方块底作用。设方块底面的长度为面的长度为b, P与底面的距离为与底面的距离为a,接触面间的摩擦系数为,接触面间的摩擦系数为f ,问,问当当P逐渐增大时,方块先行滑动还是先行翻倒?逐渐增大时,方块先行滑动还是先行翻倒?WPabWPACaFNFmax解:解:1 假定方块处于滑动临界平衡状态假定方块处于滑动临界平衡状态Fy
20、 = 0N - W = 0Fx = 0P - Fm = 0即 P = Fm=f N = f WFmax= f FN2 假定方块处于翻倒临界平衡状态假定方块处于翻倒临界平衡状态,画受力图。画受力图。WPabNFA MA(Fi) = 00Pa2bWa2WbP 3 讨论讨论:比较比较 Wb/2a 与与 f W 可知可知(1)如果如果 f W Wb/2a ,即即 f b/2a , 则方块先翻倒。则方块先翻倒。 (Wb/2a为将要翻倒时所需为将要翻倒时所需P力)力) ( W为为将要将要滑动滑动时所需时所需P力力. )(2)如果如果 f W Wb/2a ,即即 f b/2a , 则方块先滑动则方块先滑动.
21、(3)如果如果 f W = Wb/2a ,即即 f = b/2a , 则滑动与翻倒则滑动与翻倒将同时发生将同时发生.P = f W 滑动时滑动时 aWbP2翻倒时翻倒时lDBADOA例例5 均质三角板均质三角板OAB的重量为的重量为W1,均,均质圆轮质圆轮C的重量为的重量为W2,圆轮的外半径,圆轮的外半径为为R,内半径为,内半径为r,且,且R2r,D、E处处静摩擦系数都为静摩擦系数都为f,若水平拉力,若水平拉力Q作用作用于于H处,处, , ,试求系统试求系统能保持平衡能保持平衡Q的最大值(不计滚动摩的最大值(不计滚动摩阻)。阻)。 0Em解解 该题若先判断出该题若先判断出D、E两处接触面两处接
22、触面滑动趋势,再画出这两个接触处摩擦力的滑动趋势,再画出这两个接触处摩擦力的方向,存在一定困难,但若应用平衡方程方向,存在一定困难,但若应用平衡方程作定性受力分析,则可正确确定两接触处作定性受力分析,则可正确确定两接触处摩擦力方向。摩擦力方向。可确定可确定D、E处摩擦力方向均自右向左处摩擦力方向均自右向左,圆轮的受力图如图,圆轮的受力图如图: :0)(21rRQRFQF4110Dm0)(22rRQRFQF432 0yF0212WNN212WNN 0Dm 0Em本题的解题步骤为本题的解题步骤为1以圆轮为研究对象,由以圆轮为研究对象,由Q2以三角块为研究对象,其受力图为图以三角块为研究对象,其受力
23、图为图(c) 00m032111lNlFlW11132WFN3假设假设D D处先达到临界状态,则在临界状态下处先达到临界状态,则在临界状态下)32(1111WFffNF)1(max1141)1 (32QWffF求得求得:1)1 (max)1 ( 38WffQ,所以无法确定所以无法确定D、E 处哪处先滑动。处哪处先滑动。 21FF21NN4假设假设E处先达到临界状态,则在临界状态下处先达到临界状态,则在临界状态下)4132()32(2)2(max121122WQWfWFWffNF)3(3)32(421)2(maxfWWfQ求得求得:)2(max)1(maxmax,minQQQ5系统能保持平衡的最
24、大为系统能保持平衡的最大为这说明,对系统中多处存在摩擦的平衡问题,当系统的这说明,对系统中多处存在摩擦的平衡问题,当系统的平衡状态破坏时,各处摩擦力一般不会同时达到最大值。平衡状态破坏时,各处摩擦力一般不会同时达到最大值。此题平衡状态破坏时圆盘处于滚动状态。此题平衡状态破坏时圆盘处于滚动状态。已知: 均质木箱重,kN5P,4 . 0sf,m22 ah;30oq求:(2)能保持木箱平衡的最大拉力。(1)当D处为拉力 时,木箱是否平衡?Nk1F例5-5解:解:(1)取木箱,设其处于平衡状态。)取木箱,设其处于平衡状态。0 xF0yF0cosqFFs0sinqFPFN0AM02cosdFaPhFNq
25、解得解得N866sFN4500NFm171. 0d而而N1800maxNsFfF因因,maxFFs木箱不会滑动;木箱不会滑动;又又,0d木箱无翻倒趋势。木箱无翻倒趋势。木箱平衡木箱平衡(2)设木箱将要滑动时拉力为)设木箱将要滑动时拉力为1F0 xF0yF0cos1qFFs0sin1qFPFN又NssFfFFmax解得N1876sincos1qqssffF设木箱有翻动趋势时拉力为2F0AM02cos2aPhFq解得N1443cos22qhPaF能保持木箱平衡的最大拉力为N1443* 对此题,先解答完(2),自然有(1)。已知: 均质轮重,N100P杆无重,,N50BF4 . 0Cf(杆,轮间),
26、lro60q时,;2lCBAC求: 若要维持系统平衡轮心 处水平推力 ;minFO(1) (轮,地面间),3 . 0Df例5-615. 0Df(2) (轮,地面间),minF轮心 处水平推力 。O解:F小于某值,轮将向右滚动,q角变小。DC ,两处有一处摩擦力达最大值,系统即将运动。)(a先设 处摩擦力达最大值,取杆与轮。C对AB杆0AM02lFlFBNC得N40CDFF0 xF060cos60sinooDCNCFFFF,N40,N100DCNCNCFFFFN100NCF又NCCCCFfFFmax得N40CF对轮0OM0 rFrFDC得N6 .26F0yF060sin60cosooCNCNDF
27、FPF得得N6 .184NDF当 时,3 . 0DfN39.55maxNDsDFfF,40maxDDFNFD处无滑动N6 .26minF(b) 先设先设D 处摩擦力达最大值处摩擦力达最大值取杆与轮,受力图不变取杆与轮,受力图不变对AB杆0AM02lFlFBNC得N100NCF不变NCCCCFfFFmax但对轮0OM0 rFrFDC共有 四个未知数NDCDFFFF,N62. 4F解得在 时,3 . 0Df当 时,15. 0Df解得N4 .172NDFN86.25NDDCDFfFF.N81.47minFC处无滑动即在 时,3 . 0DfD处不会先滑动。得CDFF(1)0 xF0yF060cos60
28、sinooDCNCFFFF(2)060sin60cosooCNCNDFFPF(3)此时NDDDFfF (4)对轮0OM0 rFrFDC已知:,mN40AM,3 . 0sf各构件自重不计,尺寸如图;求:CM保持系统平衡的力偶矩 。解:1CCMM设 时,系统即将逆时针方向转动,画两杆受力图。例5-13(a)(b)0AM01ANMABF0CM060cos60sino1o11 lFlFMsNC)(a对图 ,)(b对图 ,又1111NsNsssFfFfFF解得mN39.701CM2CCMM设 时,系统有顺时针方向转动趋势,画两杆受力图。0AM02ANMABF)c(对图 ,(c)解得又2222NsNsss
29、FfFfFFmN61.492CM系统平衡时,mN39.70mN61.49CM0CM060cos60sino2o22lFlFMsNC)d(对图 ,(d)5-4 滚动摩擦滚动摩擦(1) (1) 滚阻力偶和滚阻力偶矩滚阻力偶和滚阻力偶矩QPcrA设一半径为设一半径为r的滚子静止地放在水的滚子静止地放在水平面上平面上,滚子重为滚子重为P。在滚子的中在滚子的中心作用一较小的水平力心作用一较小的水平力Q。取滚子为研究对象画受力图。取滚子为研究对象画受力图。Fx = 0 Q - F = 0Fy = 0 N - P = 0mA(Fi) = 0 m - Qr = 0m = Q rQPcrANFm(2) (2)
30、产生滚阻力偶的产生滚阻力偶的原因原因AoQPNFRAoQPB 滚子与支承面实际上滚子与支承面实际上不是刚体不是刚体, ,在压力作用下在压力作用下它们都会发生微小变形。它们都会发生微小变形。 设反作用力的合力为设反作用力的合力为R并作用于并作用于B点点, ,滚子在力滚子在力P , , Q与与R作用下处于平衡状态。作用下处于平衡状态。 将力将力 R 沿水平与竖直两个方向分解沿水平与竖直两个方向分解, ,则水平分力即为摩擦力则水平分力即为摩擦力F,竖直分力即竖直分力即为法向反力为法向反力N。由于物体变形力由于物体变形力N向前偏移一微小距离向前偏移一微小距离e。eAoQPNFmAoQPFN将力将力F与与N向向A点简化,得到作用于点简化,得到作用于A点的力点的力 N与与F,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《马氏体转变》课件
- 2025年成都货运从业资格证考试试卷题库
- 探索奥秘:运动与力
- 商标注册申请书范本
- 如何培养新生儿颅脑疾病的超声诊断思维-进修医师带教体会
- 2024-2025人教版初中七下数学湖北专版10.3第3课时 图文信息问题与行程问题【课件】
- 2024-2025人教版初中七下数学湖北专版8.1第1课时-平方根【课件】
- 关于冬季精装施工方案
- 公路墩柱安全爬梯施工方案
- 东营适合大学生的创业项目投资小
- (完整版)高考英语词汇3500词(精校版)
- NPI管理流程文档
- 阀门噪声计算程序(IEC)(带公式)
- 2022年RDA5807m+IIC收音机51单片机C程序上课讲义
- 雅马哈贴片机_修机_调机的经验之谈1
- 正负零以下基础施工方案(44页)
- 义务教育《劳动》课程标准(2022年版)
- 2018年黑龙江统招专升本公共英语真题
- 大学物理光学答案
- 老挝10大经济特区
- 通用标准快装接头尺寸表
评论
0/150
提交评论