版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、任意四边形的中点四边形的教学设计清流县城关中学魏水林教学目标:1 激发学生的学习兴趣,培养学生勇于探索、勇于创新的精神。2培养学生独立分析问题、解决问题的能力以及研究能力和创新意识。3理解中点四边形的概念,掌握中点四边形判定、证明及应用。教学重点:中点四边形形状判定和证明教学难点:对确定中点四边形形状的主要因素的分析和概括教学方法:自主合作式教学教学手段:电脑、多媒体课件教学过程阶段一:学生活动一一引入、基本概念活动要求:学生以小组形式对问题一一进行探讨,发言老师指导:教师指导小结设计意图:因学生对平行四边形一章学得较好,问题1起点较高,重在培养学生的逆向思维,提高学生的学习兴趣。复习:(四边
2、形的知识)研究问题1:如图,在四边形ABCD中,E、F分别为AB、BC边上的中点,你能 否分别在CD、DA边上找到点G、H,使四边形EFGH为平行四边形?说明理由。(或如图ABCD为一个四边形纸片,E、F分别为AB、BC的边上的中点,以EF 为边能否折叠出一个平行四边形 EFGH,使顶点G、H分别在CD、DA边上?若能, 说明理由)E阶段二:学生活动一一基础问题研究活动要求:完成对问题一研究发现、证明的过程,老师指导:指导部分学生研究问题设计意图:通过电脑的动画效果,给学生创造一个发现问题、解决问题的情境。目的在于激发学生的学习兴趣,培养学生“观察、发现、猜想、证明”问题的数学 思想和能力。活
3、动流程:中点四边形的定义:如图,四边形ABCD的各边的中点,所构成的四边形EFGH叫做四边形ABCD的 中点四边形。DC研究:利用课件变换四边形ABCD形状B1、发现:无论四边形ABCD勺形状怎么变化,中点四边形 EFGH勺形状始终为平行 四边形。2、证明:(证法一)连接AC E、F分别为AB BC的中点 EF/ AC, EF=1/2AC 同理 HG/ AC, HG=1/2AC EF/ HG 且 EF=HG四边形EFGH为平行四边形(证法一)连接AC BD E、F分别为AB BC的中点 EF/ AC同理HG/ AC EF/ HG同理FG/ HE四边形EFGH为平行四边形归纳:任意一个四边形的中
4、点四边形,都为平行四边形阶段三:学生活动一一问题的研究和概括活动要求:用“一般丨特殊丨一般”的方法发现和研究问题,概括出确定中点四边形ABCD状的主要因素。老师指导:弓I导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。 设计意图:利用电脑的大容量使学生能够在较短的时间内对问题进行多方面地研究。培养学生“从一般到特殊再到一般”的研究问题的方法和概括能力DD研究问题2:特殊四边形的中点四边形的形状活动流程:1、发现问题(特殊四边形):在上一阶段研究的基础上,利用课件变换四边形ABCD 形状,使四边形ABCD分别为平行四边形、矩形、菱形、正方形和等腰梯形,研究中 点四边形EFGH形状。发现
5、:中点四边形的形状有矩形、菱形和正方形问题:决定中点四边形EFGH的形状的主要因素是四边形 ABCD的边?角?对角 线?2、研究问题(一般四边形):反之若中点四边形EFGH分别为矩形、菱形和正方形,则四边形 ABCD是否一定 分别为菱形、矩形(等腰梯形)、正方形?DCGHFEGHCFB3、概括规律:决定中点四边形 线的长度和位置。EFGH的形状的主要因素是四边形 ABCD的对角(1) 若对角线AC=BD,贝U四边形EFGH为菱形;(2) 若对角线AC丄BD,则四边形EFGH为矩形;(3) 若对角线AC=BD , AC丄BD,则四边形EFGH为正方形用“一般丨特殊丨一般”的方法发现和研究问题,概
6、括出确定中点四边形ABCD形状的主要因素。引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。阶段四:学生活动一一发散和创新活动要求:利用电脑 1、拖动A点使四边形ABCD的图形变化进行研究。2、变 化E、F、G、H点的条件进行研究。老师指导:老师引导设计意图:培养学生的发散思维能力,提高学生研究数学的兴趣和创新意识。1、图形发散“实验”:利用计算机对图形进行变换“实验”实验三n经过以上实验,当ABCD是上面的图形时四边形EFGH仍为平行四边形。特别是 “实验三”,四边形EFGH可以看作四边形ADBC的边AD、BC的中点和对角线AB、 CD的中点的四边形,这样就引出了新的问题。2、条件
7、发散:AC应用1:如图,梯形ABCD中,AB / CD, 中点,F是AB中点。(1) 若 EF=MN,贝U BD 丄 ME ;(2) 若 AC=BD,贝U EF=MN ;(3) 若 AC 丄 BD,贝U EF=MN。M是AD中点,N是BC中点,E是CD(1)如图:E、F、G、H分别为各边 的四等份点,则四边形EFGH为平行四 边形(2)如图:E、F分别AB、BC边的四等份点,G,H分别 为边CD、DA的中点,则四边 形EFGH为梯形。阶段五:学生活动一一简单应用活动要求:学生分析老师指导:老师精点设计意图:培养学生对新知识灵活的应用的能力(只分析方法,应用电脑变换图形,使一题多变,进行变式应用
8、)应用2:如图(1) (2) (3),最外面的矩形、菱形、正方形的面积为 1,则最里面 的中点四边形的面积。(探索解题法,展示数学的图形美)图(3)阶段六:小结活动要求:思考、归纳老师指导:教师引导B设计意图:培养学生的归纳能力, 般方法。使学生形成完整的知识结构和研究数学问题的一1本节课应用了哪些数学方法?ABCD的对角线的长度和位2、决定中点四边形EFGH的形状的主要因素是四边形3、学习中应具备积极探索、勇于创新的品质。阶段七:教师活动一一作业设计意图:促使培养研究学习型的学生对所研究的问题进行进一步研究和归纳教学反思:1本节课的指导思想是充分发挥学生在学习中的主体作用。从“问题提出探讨归纳 应用 发散和进一步研究”的过程中,同学们主动参与、积极探索,并对难的问题同学们合作研究,整个课堂学习积极性高,研究风气浓。2、老师充分发挥在学习中的主导作用。对学习能力弱的学生积极地加以指导,并 帮助学生分析问题,概括归纳新知识。3、本节课的突出特点是利用现代技术,为学生创建一个学习、研究的学习情境。 通过图形的变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第16课 国家出路的探索与列强侵略的加剧-2024-2025学年统编版高一历史上册
- 2024年食用油脂采购协议格式
- 厕所施工专项协议2024年范本
- 2024年城市道路改造协议样例
- 2024个人信息数据保密协议格式
- 2024年专业安防设施施工协议规范
- 2024年房产中介业务协议范例
- 2024年电线电缆敷设工程协议范本
- 定制策划服务协议模板2024年期
- 2024年土方交易协议规范
- HJ 1188-2021 核医学辐射防护与安全要求(标准网-www.biaozhun.org)
- (高清版)DZT 0399-2022 矿山资源储量管理规范
- 五年级上册数学教学设计-植树问题 人教版
- 清明节(节气)主题课件
- 家长会课件:初一上学期期中考试后的家长会课件
- 人工智能机器人科普小知识
- 2024年同等学力申硕-同等学力(社会学)笔试历年真题荟萃含答案
- VTE护理预防新进展
- 社区儿童健康管理案例分析报告
- 宪法的形成和发展
- 医学检验质量管理手册
评论
0/150
提交评论