电气论文英文翻译-在最优负荷流研究中有功和无功功率模型的影响_第1页
电气论文英文翻译-在最优负荷流研究中有功和无功功率模型的影响_第2页
电气论文英文翻译-在最优负荷流研究中有功和无功功率模型的影响_第3页
电气论文英文翻译-在最优负荷流研究中有功和无功功率模型的影响_第4页
电气论文英文翻译-在最优负荷流研究中有功和无功功率模型的影响_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、在最优负荷流研究中,有功和无功功率模型的影响教授l.g. dias, phd博士学位m.e. el-hawary, beng, masc索引术语:造型、最优化文摘:最优负荷流动通常认为有功和无功负荷与电压水平无关。本文研究了将有功和无 功功率分量与母线电压相关联的静态负荷模型的指数形式,并研究了在几种测试系统 的最优负荷流解中加入该负荷模型的影响。模型的活性和无功功率的影响是单独的, 并在一起的时候。结果与相应的标准测试系统的最优负荷流解决方案进行了比较。与标准最优负荷流方案相比,燃料成本、总功率损耗和电压值的差异对某些系统具有 重要意义。当只对有功功率随电压变化进行建模时,燃料成本和发电功率

2、是最高的。系统加载越重,传统opf的燃油成本差异越小,而opf的功率随电压变化而变化。当 模拟的有功功率和无功功率时,功率损耗的差异更倾向于支持。负载越高,功率损耗 的差别就越小。当模拟的有功功率和无功功率时,电压的偏差会更大。无功功率的建 模比有功功率对电压偏差的建模更有影响。相反的是,在不同的相位角和增加的电力 成本中,主要的因素是有功模型。小型系统的迭代次数没有差异。更大、更重的系统 在所需的次数迭代中表现出不同。1介绍在传统的最优负荷流研究中,假定有功功率和无功功率要求都是恒定值,而不考虑电 压值。在实际的电力系统运行中,我们遇到了不同种类的负荷,例如住宅、工业和商 业负荷。这些负载的

3、性质是这样的,它们的有功和无功功率依赖于系统的电压和频率 电压变化对优化负载流动的影响是显著的。电压和频率对有功和无功负载的影响已经 被几个研究人员研究了一段时间1 -17。在负荷流研究中载入模型的文献只局限于少 数几个研究2-4, 8, 18-21。结果表明,加载模型对某些系统具有显著的影响19。进 一步表明,在对负载建模敏感的母线上,获取负载的详细加载模型是合理的20。研 究了母线对模型参数变化的敏感性21。然而,在最优负荷流研究中加入负荷模型的 影响到目前为止还没有得到解决。因此,这项工作的目的是确定当载入模型时,在最 优负荷流解决方案中是否有变化。预期效果将与负荷流研究的效果相似,在认

4、识到负 载能力对问题形成的电压大小的依赖性时,可能会得到完全不同的结果。2静态负荷模型在文献中已经提出了几种静态负荷模型,其中最常用的是指数型和二次型6。在我们 的研究中,我们使用了指数形式。6 = 3“中(1)qi = aqvjba(2)系数ap和aq的值,是该母线上指定的有功和无功功率。我们的研究中使用的指数bp 和bq的值是用文献中所报道的参数的平均值来计算的。所使用的模型是由 pi = piapvi138(3)qi = qfpvi322(4)在实际应用中,对系数ap、hq、bp、bq的评估要求使用参数估计算法,在研究中考虑 的每个母线上使用电压和功率的记录(有功和无功)18。3 0pf

5、结合负荷模型。最优负荷流的目标是将代的总燃料成本降至最低,同时满足电网的有功功率和无功 功率约束,由负荷流动方程和运行不等式约束来表示。给出了目标最小函数jf的标准 形式。mlif - ai + pipgi + yipgi i=l其中m,为母线,叫、氏和的数量,是第i个母线的发电源的燃料成本参数,而?#是 第i个母线的有功发电。将表示负载流方程的等式约束合并得到以下增强目标函数:j = jf + ip + jq其中,下标p和q表示活动和反应母线约束。nip =入pi pi - pgi + pdii=lnjq =人qi qi - qgi + qdii=m2在前面的方程=系统中母线的总数。m1=电

6、压控制母线的总数量。qgi=在第i个母线上的无功发电。pdi,qdi =指定的活动和无功功率需求在第i个母线。api, aqi =拉格朗日乘数,对应于第ith总线上的有功功率和无功功率的増量成本函数。 pi和q是作为电压和相位角的函数给出的有功和无功功率。为了解释负载变化与电压,我们有负载模型的形式。pdi = f(vi)qdi = g(vi)因此,可以在表单中编写最小化函数。njp = api pi - pgi 4- f(vt)i=1 > n)q -入qi qi - qgi + g(vi)i=m2j最小化过程需要通过将j的第一个变化量设定为0来解决一组定义最优性的方程。在 这项工作中,

7、我们用牛顿的方法来求解方程组,因此也需要j的第二种变化。当载入 模型时,大多数二阶导数不会改变;只有对电压的导数才会改变。这是因为负载模型只 是电压的函数。应该指出的是,尽管由于合并负载模型而对opf方程进行的修改可能 看起来很小,但实际结果的显著差异是可以预期的,从后续章节中所报告的结果可以 看出。4计算实验通过六种常用的基本测试系统,研究了有功和无功功率模型对优化负载流的影响。这 些是5、14、30、37、57和118个母线系统。我们对5、14、30母线的负载进行了分 配,为每个系统生成3个案例。共有9个系统案例,分别为5a、5b、14a、14b、30a、 30b、37、57和118。对于

8、每个系统,我们使用前面讨论的指数模型来表示有功和无 功负载的依赖关系。每个系统考虑三个案例:案例1 :只对有功功率负载的变化进行建模。在这种情况下,无功功率被认为是独立于 母线电压的。案例2:模拟无功负荷的变化,假设有功功率与母线电压值无关。案例3:模型的有功功率和无功功率都取决于母线电压的大小。因此,我们能够得到27组结果。对于每一组,我们计算出从最优潮流解得到的燃料成 本、总发电量和总功率损失。我们计算电压的相关母线电压,相位角和增量成本函数 入p和。我们还计算了这些变量与相应的标准最优负荷流解变量之间的差异。对于电 压、相角、和aq ,我们还计算了绝对平均差和最大差值。平均值是在这个变量

9、不是常数的母线数上做的。举例来说,电压差的绝对平均值是通过对所有的负载母线和发 电机/同步电容器母线的平均值来计算的,它们的电压约束已经被释放。注意,1在电 压控制母线上为零,但在负载母线和发电机/同步冷凝器母线上不为零,其电压约束已 被释放。现在,当发电机无功功率违反(被称为qg违规。)发生时,电压约束被释放。 因此,如果qg的模式,在标准的最优负载流解决方案中的违规与模型最优的负载流解 决方案不同,那么在这样的母线上的差异可以是无限的。因此,在这种情况下,计算 的绝对平均值也可以是无限的。为了避免这个问题,我们忽略了aq的母线,在计算 %的绝对平均差时,差异是无限的。我们使用上标s来表示使

10、用标准最优功率流得到的结果,而上标m表示在最优潮流中 合并负载模型得到的结果。对感兴趣的变量的区别是用它们的绝对值和最大值来计算 的。5的结果和分析所有结果的汇总表见表1,对应于所考虑的系统,5a、5b、14a、14b、30a、30b、 37、57和118个母线。在每一种情况下,我们都指出:np =模拟有功负荷的数目。nq =模拟无功负荷的数量。在该表的第一列中使用的缩写c是指案件编号、1、2和3。第一个块的项是 第2栏:最优燃料成本差异af第3栏:总发电量差异apc第4列:总功率损失差异 第5列:绝对平均电压差异avg.abs.zw表1:最优潮流结果的差异总结。systemcfpgplavg

11、.avg.avg.avg.iter.maxmaxmaxmaxabs.a门s.abs.abs.diff.v()入p入qv e入p入q5a1-4.14-3.40-5.960.070.121.651380.900.070.142.221477.0np=42-0.01-0.01-0.430.090.010.005.100.10-0.020.00-6.1nq=43-4.02-3.30-6.150.160.101.591322.900.160.132.131414.75巳10.640.476.380.260.2214.771018.00-0.370.5122.001135.0np=520.030.020.

12、520.180.020.1811.80-0.230.020.2812.2nq=430.400.316.540.380.2113.82956.70-0.560.4920.631069.314a1-7.70-4.16-7.630.100.612.141762.300.140.83-3.864104.5np=112-0.03-0.01-0.370.250.020.0224.000.460.04-0.04-46.7nq=113-7.41-4.00-7.650.340.572.061631.600.550.78-3.723952.414b1-4.06-2.16-5.860.790.7827.171848

13、.3-10.910.9839.393059.7np=142-0.07-0.04-0.700.750.100.1215.6-10.990.150.2022.3nq=113-3.14-1.694.891.190.6822.121478.2-11.480.8831.5930a1-3.14-1.80-1.890.050.064.18890.2-3-0.10-0.2611.071688.2np=212-0.01-0.01-0.230.150.020.0814.4-20.27-0.040.2227.8nq=213-2.90-1.66-1.840.190.053.54767.0-30.340.269.691

14、442.330b10.310.182.580.140.4211.42717.33-0.36-0.7623.661497.0np=2920.050.030.600.250.010.6543.92-0.510.051.20100.0nq=213-0.010.002.620.330.339.90632.84-0.750.6520.771354.23712.081.11-9.480.571.6513.084004.8-11.796.0348.9138293.71np=312-0.09-0.05-1.901.050.080.1966.20-10.86-0.821.78-634.56nq=313-1.10

15、-0.60-11.790.831.4410.452228.5-1-6.69-5.338.8220105.6571-1.47-0.77-0.330.080.114.94625.020.380.4517.542237.6np=4220.000.000.140.150.030.2323.94-0.810.100.94100.0nq=423-1.46-0.77-0.300.210.094.24569.36-1.08-0.2914.66201411814.932.50-1.010.070.523.791216.200.68-3.556.1312840np=9120.040.010.260.130.020

16、.0745.8-5-0.55-0.09-0.38-1912nq=9034.782.42-0.090.130.473.681325.5_5-0.49-3.195.8912843列6:绝对平均相角差。第7栏:绝对平均入p,差异avg. abs入p 第8栏:绝对平均入p,差异avg. abs入p第二个块的项是。第2栏:最大电压差最大值0v)第3列:最大相角差最大值(ze)第4列:最大值a ,差值,最大值(入。)第5列:最大值1 ,差值,最大值(入从表1中我们可以得出,当只有电压的有功功率变化时,燃料成本的差异是最高的(案 例1)。系统加载系统b越重,燃油成本差异越低。总发电量的差异体现在一个人身上。

17、 当有功和无功功率均为模型(案例3)时,功率损耗的差异更明显。负载越高,功率损耗 的差别就越小。在电压差异(绝对值和绝对值的最大值)上,当有功和无功功率被模拟时,会发生更大 的偏差。无功功率的建模比电压偏差上的有功功率模型对电压的影响更大。与此相反 的是,在主要因素为有功功率模型的情况下,相位角和增量成本的差异是正确的。对于小型系统,迭代号的差异很小。更大、更重的系统在所需的迭代次数上显示出不 同。最显著的差异发生在人差异(/*、)达到了成百上干。这主要发生在以电压为模型 的有功功率变化时。当仅模拟无功功率的变化时,大多数、的值小于25%。下一个 最显著的区别发生在然而,最高的差异人,记录为人

18、n ,与大约38000%的入n 相比,约为50%。唯一有5%差别的其他变量是燃料成本、功率损耗和电压大小。在 37母线系统中,电压差异高于5% ,而燃油成本差异高于5% ,仅发生在14a系统.结果表明,无功模型在结果上并没有显著的差异,大多数变量的有功功率模型都是女口 此。然而,这并不适用于一个非常重要的变量,母线电压。例如,在模拟活动功率时 的37母线系统中,我们发现最大电压差为1.8% ,而当无功功率为-10.9%时,则表示电压升高的负号。这是相当显著的增加,因为在这个情况下母线的电压是不限制的。 然而,对于所有其他系统,电压差小于2%。37母线系统中电压的高差是由于母线3 对无功功率建模

19、非常敏感18-20。与无功功率模型相比,燃料成本差异至少是有功模型的一个数量级。这似乎是合乎逻 辑的,因为燃料成本主要是产生的有功功率的函数。对于系统14a ,当有功和无功功 率模拟时,燃料成本增加了 7.4%。因此,我们看到,当使用标准的最优负荷流解决方 案时,该系统的预测燃料成本低于如果负荷与所使用的模型相似的情况下实际的燃油 成本。现在,在这个例子中使用的负载模型是一个具有典型指数的指数模型。-个更 详细的模型和精确的参数可以给出更重要的结果。当负载被建模时,所需的总发电量并没有差别。然而,正是这些差异影响了燃料成本 的差异,正如我们之前看到的,有时是显著的。这是由于燃料成本函数的性质,

20、它在 发电中有一个二次项。在许多系统中,总功率损耗的差异大于5%。同样的,这是当有功功率被模拟,单独 或与无功功率。当模拟了有功和无功功率时,对37个母线系统的最大记录的是 11.79%。因此,我们认为在最优负荷流研究中使用负荷模型对总功率损失的预测是有 利的。任何系统的相位角差(报告的度数)不超过6度。因此,关于相角预测,我们看到负荷 模型可能不会起重要作用。a和前面提到的标准最优负荷流结果有最大的差异。然 而,这些是增量成本函数,而不是系统的实际状态。因此,这些差异不需要考虑到反 应性增量成本。在所有系统中,收敛所需的迭代次数在4次迭代中。这不是很重要,因为变化发生在 两个方向。研究发现,

21、在负荷模型(非最优负荷流)研究中,一些对负荷模型不敏感的b系统在负 载流量的求解过程中,电压差要大得多。这可能是由于这些系统所使用的燃料费用参 数没有在原始数据中指定。用于不同发电机的参数之间并没有太大的差别。这使得不 同发电机母线上的发电机组之间的距离非常接近,而且与普通负荷流数据中所规定的 功率世代非常不同。由于没有使用活动发电的限制,因此不可能发现强制发电的影响 在特定于普通负荷流的几代人的范围内变化。6结论本文报道了在最优潮流解决方案中,结合负载模型对各自母线电压大小的有功功率和 无功功率的依赖关系的研究结果。一个广泛的计算实验使用6个标准的测试系统,从 5个到118个母线系统不等。负

22、载级别的影响也包括在内。当只模拟有功功率随电压变化时,燃料成本差异是最高的。系统加载越重,燃油成本 差异越小;总发电量的差异也有类似的表现。当模拟的有功和无功功率时,功率损耗的 差别更明显。负载越高,功率损耗的差别就越小。在电压差异方面,当有功功率和无功功率都被建模时,会发生更大的偏差。无功功率 的建模比有功功率对电压偏差的建模更有影响。相反,由于功率模型的有功功率的不 同,在相位角和增量成本上的差异是正确的。对于小型系统来说,迭代次数没有差异。更大、更重的系统在所需的迭代次数上显示 出不同。最显著的差异发生在入(身上;而、差异 ,可以达到成百上千。这种情况主要发生 在主动式的电压随电压变化的

23、情况下,在这种情况下,大多数 的数值都小于20%。 接下来最显著的差异发生在夂身上。在37母线系统中,电压差异高于5% ,而燃油成 本差异高于5% ,仅发生在14a系统。结果表明,无功模型在结果上与大多数变量的有功功率模型没有显著差异:然而,这并 不适用于母线电压。例如,在模拟活动功率时,在37母线系统中,最大电压差仅为 1.8% ,而当无功功率模拟为-10.9%时,则表示电压升高的负号。当模拟负载时,所需的总发电量没有显著差异。然而,这些差异会影响燃料成本的差 异,正如之前所显示的那样,有时是显著的。这是由于燃料成本函数的性质,在发电 中有一个二次项。在许多系统中,总的功率损耗的差异大于5%

24、。同样的,这是当有功功率被模拟, 单独或与无功功率。因此,我们认为在最优负荷流研究中使用负荷模型对总功率损失 的预测是有利的。任何系统的相位角差(报告的度数)不超过6度。因此,关于相角预测,我们看到负荷 模型可能不会起重要作用。与前面提到的标准最优负载流结果的差异x p和x。最大。当负载模型在负载流研究中被纳入时,可以看出,对于某些系统,燃料成本、总功率 损耗和电压的差异是显著的,而对于其他一些系统,这些差异并不显著。对于系统5b、 30a、30b、57和118 ,这些差异小于5% ,尽管在118母线系统中燃料成本差异(fcd)接近5%。因此,有必要使用一个平均模型(例如我们使用的模型),并找

25、出一个特定的 系统在进行经济调度时是否对负载建模非常敏感。如果系统对负载建模很敏感,那么 就需要为负载获取精确的模型以获得更准确的结果。如果系统对负载建模不敏感(在使 用平均模型进行测试时),就不需要为该系统获取准确的负载模型。在这种情况下,可 以使用恒功率模型来获得一个标准的最优负荷流解决方案。7参考文献1 berg, g.j., and kar, a.k.: model representation of powersystem loads. proceedings of 1971 power industry computationconference, pp. 153-162,1971

26、2 cea working group report: load modelling techniques andpractice. engineering and operating division meeting, quebeccity, march 19803 cea working group report: monitoring of loads and determination of load models at ontario hydro. spring meeting 19804 el-hawary, m.e.: power system load modelling an

27、d incorporation in load flow solutions. proceedings of the third largesystems symposium, university of calgary, june 1982.5 ieee committee report: system load dynamic simulation, effectsand determination of load constants,ieee trans., 1973, pas-92,6 ieee working group report: the effect of frequency

28、 and voltageon power system loads. paper 31 cp66-64, ieee winter meeting,new york 19667 iliceto, f., ceyhan, a., and ruckstuhl, g.:behaviour of loads during volrage dips encountered in stability studies,ieee trans., 1972, pas-91, pp. 247ck24798 murty, p.s.r.: load modelling for power flow solutions,

29、iee journal (india), july 19779 sabir, s.a.y.: remote load data acquisition for modelling of power systems loads. internal report, ontario hydro, september197710 srinivasan,k.,nguyen,c.t., and robichaud,y.: on line load behaviour modelling from natural variations. paper a 78- 0440, ieee winter power

30、 meeting, new york, 1978.11 sabir, s.a.y., and lee, d.c.: dynamic load models derived from data acquired during system transients,ieee trans., 1982, pas- 101, pp. 3365-337212 nguyen, c.t., panneton, j.g., robichaud, y., st.jacques, a., and srinivasan, k.: load characteristics and stability of the hydro quebec system,ieee trans., 1980, pas-99,13 general electric company: determining load characteristics for transient performance*. epri final report rp-849-1. march 198114 university of texas at arlington:determining load characteristics for transient performance. epri rnal report rp 8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论