发现存在系统误差的方法在规定的测量条件下多次测_第1页
发现存在系统误差的方法在规定的测量条件下多次测_第2页
发现存在系统误差的方法在规定的测量条件下多次测_第3页
发现存在系统误差的方法在规定的测量条件下多次测_第4页
发现存在系统误差的方法在规定的测量条件下多次测_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、发现存在系统误差的方法(1)在规定的测量条件下多次测量同一个被测量,从 所得测量结果与计量标准所复现的量值之差可以发现并得到恒定的系统误差的 估计值。(2)在测量条件改变时,例如随时间、温度、频率等条件改变时,测量结果按 某一确定的规律变化,可能是线性地或非线性地增长或减少,就可以发现测量结 果中存在可变的系统误差 减小系统误差的方法(1)采用修正值的方法。(2)在实验过程中尽可能减少或消除一切产生系统误差的因素。(3)选择适当的测量方法,使系统误差抵消而不致带入测量结果中 举例说明几种消除恒定系统误差的方法异号法改变测量中的某些条件,例如测量方向、电压极性等,使两种条件下的测量 结果中的误差

2、符号相反,取其平均值以消除系统误差。【案例】带有螺杆式读数装置的测量仪存在空行程,即螺旋旋转时,刻度变化而 量杆不动,引起测量的系统误差。为消除这一系统误差,可从两个方向对线,第 一次顺时针旋转对准刻度读数为d,设不含系统误差的值为a,空行程引起的恒 定系统误差为5则d二笫二次逆时针旋转对准刻度读数为几 此时空行 程引起的恒定系统误差为-即d-a-于是取平均值就可以得到消除了系 统误差的测量结果:。二(d+d,)/2。 交换法将测量中的某些条件适当交换,例如被测物的位置相互交换,设法使两次 测量中的误差源对测量结果的作用相反,从而抵消了系统误差。例如:用等臂天 平称重,第一次在右边秤盘中放置被

3、测物X,在左边秤盘中放置舷码P,使天平 平衡,这时被测物的质量为X二P11/12,当两臂相等(11二12)时X二P,如果两臂 存在微小的差异(1112),而仍以X二P为测量结果,就会使测量结果中存在系统 误差。为了抵消这一系统误差,可以将被测物与祛码互换位置,此时天平不会平 衡,改变舷码质量到H时天平平衡,则这时被测物的质量为X二P 12/llo所以 可以用位置交换前后的两次测得值的儿何平均值得到消除了系统误差的测量结 果 替代法保持测量条件不变,用某一已知量值的标准器替代被测件再作测量,使指示 仪器的指示不变或指零,这时被测量等于已知的标准量,达到消除系统误差的口 的。【案例1】用精密电桥测

4、量某个电阻器时,先将被测电阻器接人电桥的一臂,使 电桥平衡;然后用一个标准电阻箱代替被测电阻器接人,调节电阻箱的电阻,使 电桥再次平衡。则此时标准电阻箱的电阻值就是被测电阻器的电阻值。可以消除 电桥其他三个臂的不理想等因素引人的系统误差。【案例2】 采用高频替代法校准微波衰减器,其测量原理图如图3-1所示。*A欄st授收机图31高频替代法校准微波衰减器测量原理图当被校衰减器衰减刻度从A1改变到A2时,调节标准衰减器从Asl到As2, 使接收机指示保持不变,则被校衰减器的衰减变化量Al-A2=As等于标准衰减器的变化量As=As2- Asl,可以使微波信号源和测量接收机在校准中不引入系统误 差。

5、用对称测量法消除线性系统误差的方法【案例1】用电压表作指示,测量被检电 压源与标准电压源的输出电压之差,山于电压表的零位存在线性漂移(如图3-2 所示),会使测量引入可变的系统误差。可以采用下列测量步骤来消除这种系统 误差:顺序测量4次,在tl时刻从电压表上读得标准电压源的电压测量值a , 在t2时刻从电压表上读得被检电圧源的电压测量值x,在13时刻从电压表上再 读得被检电压源的电压测量值疋,在t4时刻再读得标准电圧源的电圧测量值a J 读数tl t2 t3 t4图32对称测量法 设标准电压源和被检电压源的电压分别为Vs和Vx,系统误差用£表示,则tl 时:a 二VS+ e 1t2

6、时:x二Vx+£2t3 时:x'=Vx+£3t4 时:a '二 VS+ £ 4测量时只要满足t2-tl=t4-t3o ,当线性漂移条件满足时,则有,于是有£工十丫 a+a山上式得到的被检电压源与标准电压源的输出电压之差测量结果中消除了山于 电压表线性漂移引入的系统误差。【案例2】用质量比较仪作指示仪表,用F2级标准確码替代被校確码的方法校 准标称值为10kg的Ml级舷码,为消除山质量比较仪漂移引入的可变系统误差, 舷码的替代方案采用按“标准一被校一被校一标准”顺序进行,测量数据如下:第 一次加标准舷码时读数为msl=+0. 010g,接着

7、加被校誌码,读数为mxl=+0. 020g, 再第二次加被校舷码,读数为mx2二+0. 025g,再第二次加标准琏码,读数为 ms2=+0. Ologo则被校舷码与标准祛码的质量差由下式讣算得到:!二(mxl+ mx2) / 2-(msl- ms2) / 2=(0. 045g 一 0. 025g) / 2二+0. 01g,由此获得被校磁码的 修正值为-0Olgo修正值与系统误差估计值的关系修正值的大小等于系统误差佔计值的大小,但符 号相反写出贝塞尔公式并举例说明用贝塞尔公式法计算实验标准偏差的全过程贝塞尔 公式式中% n次测量的算术平均值,易一笫i次测量的测得值;$(£ (测量值X的

8、)实验标准偏差。【案例】对某被测件的长度重复测量10次,测量数据如下:10.0006m,10. 0004m,10. 0008m。10. 0002m, 10. 0003m, 10. 0005m, 10. 0005m, 10. 0007m, 10. 0004m,10. 0006mo用实验标准偏差表征测量的重复性,请讣算实验标准偏差。【案例分析】n=10,计算步骤如下:(1) 计算算术平均值x=10m+(0. 0006+0. 0004+0. 0008+0. 0002+0. 0003+0. 0005+0. 0005+0. 0007+0. 0004+0. 0006) m/ 10=10. 0005m(2)

9、 计算10个残差-i+0. 0001, -o. 0001, +0. 0003, -o. 0003, -0. 0002, +0.0000, +0. 0000,+0.0002,-0. 0001, +0. 0001(3) 计算残差平方和工WC-0 00012 X (1+1+9+4+4+1+1)二21X0. 00012m2(4) 计算实验标准偏差21xO.O(M>l2tnr =10-11.5xO.OOOl/w = 0.00015w所以实验标准偏差s(x)=0. 00015m二0. 0002m(自山度为n-l二9)。对被测量进行了 4次独立重复测量,得到以下测量值:10.12, 10.15, 10

10、.10, 10.11,请用极差法估算实验标准偏差s(x) o采用极差法讣算:R - =.,OJo-10.15-10.10 = 0.05(2) 査表得C值:C = 2.06(3) 计算实验标准偏差(xmwc -) C = 0.05 / 2.06 = 0,02对被测量进行了 10次独立重复测量,得到以下测量值:0.31, 0.32, 0.30, 0.35, 0.38,请计算算术平均值和算术平均值的实验标准偏差。(1)计算算术平均 值x =(0.3 U 0.32 + 0.30+ 035 + 0.38 4-031 + 0.32 + 034 4 0.37 + 036). 10 = 0.34(2)计算10

11、个残差珂=兀"一0. 03,一0. 02, 0. 04, +001, +0. 04, 一0. 03, -0. 02, 0. 00, +0. 03, +0. 02(3) 计算残差平方和/»t(0. 0009+0. 0004+0. 0016+0. 0001+0. 0016+0. 0009+0. 0004+0. 0000+0. 0009+0. 00 04)二0.0072肩叮(4) 计算实验标准偏差 ffi = 0.0094=0.0110-1所以实验标准偏差s(x)二0.01(自由度为n-l二9)判别测量数据中是否有异常值的方法拉依达准则(3。准则):若某个可疑值 xd与n个结果的

12、平均值1之差的6 一 "绝对值大于或等于3s(三倍的实验标准 偏差)时,则判心为异常值。 格拉布斯准则:设在一组重复结果xd中,其残差的绝对值必 最大值为可疑值E在给定置信概率为P = )-95;也就是显著水平为_耳 ( V或0.05时,如果满足s 汀心",可以判定耳为异常值。(;依,司_与显著水平R和重复观测次数幵有关的格拉布斯临界值。 狄克逊准则:设所得的重复观测值按III小到大的规律排列为:几山心。其中的最大值为匚讣算统计量:或X。当G勺»以如,则心为异常值;当q(么则戸为异常值。常用的三种判别异常值统计方法分别适用的情况n>50的情况下,3 o准则较

13、简 便;3<n<50的情况下,格拉布斯准则效果较好,适用于单个异常值;有多余 一个异常值时狄克逊准则较好使用格拉布斯准则检验以下1=6个重复观测值中是否存在异常值:2.67, 2.78, 2.83, 2.95, 2.79, 2.82。发现异常值后应如何处理?计算算术平均值X二(2. 67+2. 78+2. 83+2. 95+2. 79+2. 82) /6二2. 80计算残差:=xr -4 -0. 13, -0. 02, +0. 03, +0. 15, -0 01,+0. 02 绝对值最大的残差为0. 15,对应的观测值J = NZ为可疑值S则2.95-2.-1.670.09按p =

14、 O.95%=o. 95,即a 1-0.95 = 0.05. n 6.査表得:G(0.05«6)= L822.95-2,800.091.67 y G(cx. zr)一可以判定295不是异常值。计量标准的重复性与测量结果的重复性的区别量标准的重复性是对计量标准器 具的示值而言,反映的是讣量标准的能力:而测量结果的重复性是针对测量结果 而言的,反映的是测量结果的不确定度的一个分量 评定测量结果的测量重复性重复性用实验标准差定量表示:测量复现性与测量重复性的区别测量复现性在改变了的测量条件下,对同一被测 量进行多次测量;测量重复性是在相同条件下,对同一被测量进行多次测量 举例说明加权算术平

15、均值及其实验标准偏差的计算方法?如何确定权值? 1)加权 算术平均值的计算四个实验室进行量值比对,各实验室对同一个传递标准的测量结果分别为:'兀二215. 3,"17; ri 二236. 0,"心二儿二289. 7,"产29;心二216. 0,从* 二皿令口的权为1,即二叫,则各实验室测量结果的权为=«o>«c. = 292 /172 3眄= 292 /1723叫=";*4 = 2997叫=盃 u = 292 /1424所以,加权算术平均值为(2)加权算术平均值实验标准差的讣算dlx(3)如何确定权值任意设定第个合成方差

16、为单位权方差"j=iV,即相应的观测结果的权为1,=1则兀的权”:用公式计算得到叫=盘由此可见,“:与叱任仍田I成反比。合成标准不确定度越小则权越大最大允许误差的表示形式计量器具乂称测量仪器。(测量仪器的)最大允许误差 (maximum permissible errors)是山给定测量仪器的规程或规范所允许的示值误 差的极限值。它是生产厂规定的测量仪器的技术指标,乂称允许误差极限或允许 误差限。最大允许误差有上限和下限,通常为对称限,表示时要加士号。最大允许误差可以用绝对误差、相对误差、引用误差或它们的组合形式表1. 用绝对误差表示的最大允许误差 例如,标称值为1Q的标准电阻,说明

17、书指出其最大允许误差为±001Q,即示 值误差的上限为+0.01Q,示值误差的下限为-0.01Q,表明该电阻器的阻值允许 在0.99Q1.01Q范围内。2. 用相对误差表示的最大允许误差 是其绝对误差与相应示值之比的百分数。例如,测量范围为1 mV10V的电压表,其允许误差限为±1%。这种情况下,在 测量范围内每个示值的绝对允许误差限是不同的,如IV时,为土 1%X1V=±0. 01V,而 I0V 时,为土 1%X1OV二二二±0. IV。最大允许误差用相对误差形式表示,有利于在整个测量范围内的技术指标用一个 误差限来表示。3. 用引用误差表示的最大允许

18、误差是绝对误差与特定值之比的百分数。特定值乂称引用值,通常用仪器测量范围的上限值(俗称满刻度值)或量程作为特 定值。如:一台电流表的技术指标为土3%XFS,这就是用引用误差表示的最大允 许误差,FS为满刻度值的英文缩写。乂如一台0150V的电压表,说明书说明 其引用误差限为±2%,说明该电压表的任意示值的允许误差限均为土2%X150V= ±3Vo用引用误差表示最大允许误差时,仪器在不同示值上的用绝对误差表示的最 大允许误差相同,因此越使用到测量范围的上限时相对误差越小。4. 组合形式表示的最大允许误差是用绝对误差、相对误差、引用误差儿种形式组合起来表示的仪器技术指标。 例如

19、,一台脉冲产生器的脉宽的技术指标为土(X10%+0025),就是相对误差与 绝对误差的组合;乂如:一台数字电压表的技术指标:±(1XW6X量程+2X10" X读数),就是引用误差与相对误差的组合。注意:用这种组合形式表示最大允许误差时,“ ± ”应在括号外,写成±(fx 10% ±0. 025M)或r ± X10% ±0. 025坪 或10 / %±0. 025/是错误的。【案例】在计量标准研制报告中报告了所购置的配套电压表的技术指标为: 该仪器的测量范围为0. 1100V,准确度为0. 001%。【案例分析】讣量

20、人员应正确表达测量仪器的特性。案例中计量标准研制报 告对电压表的技术指标描述存在两个错误:(1) 测量范圉为0.1100V,表达不对。应写成0. IV100V或(01100)Vo(2) 准确度为0. 001%,描述不对。测量仪器的准确度只是定性的术语,不能 用于定量描述。正确的描述应该是:用相对误差表示的电压表的最大允许误差为 ±0. 001%,或写成土 1X10-5O值得注意的是最大允许误差有上下两个极限,应 该有“土”评定计量器具的示值误差的方法计量器具的示值误差是指计量器具(即测量仪器) 的示值与相应测量标准提供的量值之差。在计量检定时,用高一级计量标准所提 供的量值作为约定值

21、,称为标准值,被检仪器的指示值或标称值统称为示值。则 示值误差可以用下式表不:示值误差=示值一标准值根据被检仪器的情况不同,示值误差的评定方法有比较法、分部法和组合法 儿种。(1) 比较法。例如:电子计数式转速表的示值误差是山转速表对一定转速输 出的标准转速装置多次测量,山转速表示值的平均值与标准转速装置转速的标准 值之差得岀。乂如:三坐标测量机的示值误差是采用双频激光干涉仪对其产生的 一定位移进行2次测量,山三坐标测量机的示值减去双频激光干涉仪测量结果的 平均值得到。(2) 分部法。例如:静重式基准测力计是通过对加荷的各个確码和吊挂部分 质量的测量,分析当地的重力加速度和空气浮力等因素,得出

22、基准测力计的示值 误差。乂如:邵氏橡胶硕度计的检定,山于尚不存在邵氏橡胶硬度基准计和标准 硬度块,所以是通过测量其试验力、圧针儿何尺寸和伸出量、压入量的测量指示 机构等指标,从而评定硬度计示值误差是否处于规定的控制范围内。(3) 组合法。例如:用组合法检定标准电阻,被检定的一组电阻和已知标准 电阻具有同一标称值,将被检定的一组电阻与已知标准电阻进行相互比较,被检 定的一组电阻间也相互比较,列出一组方程,用最小二乘法计算出各个被检电阻 的示值误差。与此类同的还有量块和祛码等实物量具的检定可以采用组合法。乂 如:正多面体棱体和多齿分度台的检定,采用的是全组合常角法,即利用圆周角 准确地等于2武弧度

23、的原理,得出正多面体棱体和多齿分度台的示值误差。绝对误差、相对误差和引用误差计算方法绝对误差的计算示值误差可用绝对误差表示,按下式计算A式中:入一一用绝对误差表示的示值误差;疋一一被检仪器的示值;凡标准值。例如:标称值为100Q的标准电阻器,用高一级电阻计量标准进行校准,由 高一级计量标准提供的校准值为100. 02 Q ,则该标准电阻器的示值误差计算如 下二 100Q 100. 02Q=0 02Q示值误差是有符号有单位的量值,其计量单位与被检仪器示值的单位相同, 可能是正值,也可能是负值,表明仪器的示值是大于还是小于标准值。当示值误 差为正值时,正号可以省略。在示值误差为多次测量结果的平均值情况下,示值 误差是被检仪器的系统误差的估计值。如果需要对示值进行修正,则修正值C 由下式计算c=【案例】检查某个标准电阻器的校准证书,该证书上表明标称值为1MQ的 示值误差为0. 001 Q ,山此给岀该电阻的修正值为0. OOlMQo【案例分析】该证书上给出的修正值是错误的。修正值与误差的估计值大小 相等而符号相反。该标准电阻的示值误差为0.00

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论