版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数存在性问题作图问题一、存在三角形:1、如图,已知抛物线y=x2+2x+3交x轴于A、B两点(点A在点B的左侧),与y轴交于点C。(1)求点A、B、C的坐标。(2)若点M为抛物线的顶点,连接BC、CM、BM,求BCM的面积。(3)连接AC,在x轴上是否存在点P使ACP为等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由。2如图,过A(8,0)、B(0,)两点的直线与直线交于点C平行于轴的直线从原点O出发,以每秒1个单位长度的速度沿轴向右平移,到C点时停止;分别交线段BC、OC于点D、E,以DE为边向左侧作等边DEF,设DEF与BCO重叠部分的面积为S(平方单位),直线的运动时间为
2、t(秒)(1)直接写出C点坐标和t的取值范围; (2)求S与t的函数关系式;(3)设直线与轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由3、已知:如图,二次函数y=x2+(2k1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角AOB的面积等于3.求点B的坐标; (3)对于(2)中的点B,在抛物线上是否存在点P,使POB=90°?若存在,求出点P的坐标,并求出POB的面积;若不存在,请说明理由.4如图,直线与抛物线都经过点、(1)
3、求抛物线的解析式;(2) 动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;ABOC图9yxPE(3) 当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在请说明理由5、如下图,已知抛物线,直线y=kx+b过点B(0,2)(1)、求b的值:(2)将直线y=kx+b绕着点B旋转到与x轴平行得 位置时(如图1),直线与抛物线相交,其中一个交点为P,求出点P的坐标;yxy=kx+b BOCM(3)、将直线y=kx+b继续绕着点B旋转,与抛物线相交,其中一个交点为C,(如图2),过点C作x轴的垂线
4、CM,点M为垂足,是否存在这样的点C,使CBM为等边三角形?若存在,请求出点C的坐标?若不存在,请说明理由。yxy=kx+b BO二、 存在四边形:1、如图,已知抛物线的顶点坐标为Q,且与轴交于点C,与轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点CABDCPQ·xyO沿抛物线向点A运动(点P与A不重合),过点P作PD轴,交AC于点D(1)求该抛物线的函数关系式;(2)当ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由AB yCxO
5、M2、在平面直角坐标系中,已知抛物线经过A,B,C三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标3、如图,在平面直角坐标系中,且抛物线经过点。(1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点、,使四边形为正方形,若存在,求点、的坐标;若不存在,请说明理由。yxAOBCDyABCOx4 如图,二次函数y= -x2+ax+b的图像与x轴交于A(-
6、,0)、 B(2,0)两点,且与y轴交于点C; (1) 求该拋物线的解析式,并判断ABC的形状; (2) 在x轴上方的拋物线上有一点D,且以A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标; (3) 在此拋物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由。5已知直角坐标系中有一点A(4,3),点B在x轴上,AOB是等腰三角形(1)求满足条件的所有点B的坐标;(2)求过O、A、B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四
7、边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积二次函数存在性问题方法问题1、 如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半 轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重 合,顶点C与点F重合; (1) 求拋物线的函数表达式; (2) 如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合, 点Q不与C、D两点重合)。设点A的坐标为(m,n) (m>0)。 当PO=PF时,分别求出点P和点Q的坐
8、标; 在j的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围; 当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存 在,请说明理由。xACDEFBOQPyBO(D)yxF(C)E(A)OyxFE圖1圖2備用圖2、将直角边长为6的等腰RtAOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(3,0)BCAOyx(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使AGC的
9、面积与(2)中APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由3、如图,在平面直角坐标系中,抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.(1)求的值;(2)判断的形状,并说明理由;(3)在线段上是否存在点,使与相似.若存在,求出点的坐标;若不存在,说明理由.(4题备用图)4、如右上图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NPBC,交OB于点
10、P,连接MP (1)点B的坐标为 ;用含t的式子表示点P的坐标为 ;(3分)(2)记OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把ONC分割成三角形和四边形两部分,且三角形的面积是ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由(3分) 5、已知:在直角平面坐标系中,二次函数的图像与X轴交于A、B两点,点A在点B的左侧,与Y轴交于点C,且OC=OB=3AO(1)、求二次函数的解析式;(2)、设点D是点C关于此抛物线对称轴的对称点,直线AD、BC交于点P,试判
11、断直线AD、BC是否垂直,并证明你的结论;(3)、在(2)的条件下,若点M、N分别是射线PC、PD上的点,问:是否存在这样的点M、N,使得以点P、M、N为顶点的三角形与ACP全等?若存在,求出点M、N的坐标;若不存在,请说明理由。二次函数存在性问题特殊性问题1、(本小题满分14分)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(3,1)、C(3,0)、O(0,0)将此矩形沿着过E(,1)、F(,0)的直线EF向右下方翻折,B、C的对应点分别为B、C(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B三点,求此二次函数解析式;-y0xBAEFC432112-1-2
12、-3-4-5-1-2(3)能否在直线EF上求一点P,使得PBC周长最小?如能,求出点P的坐标;若不能,说明理由2、如图1,在平面直角坐标系中,点B在直线上,过点B作轴的垂线,垂足为A,OA=5。若抛物线过点O、A两点。(1)求该抛物线的解析式;(2)若A点关于直线的对称点为C,判断点C是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,O1是以BC为直径的圆。过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由。3、 ABC中,A=B=30°,AB=把ABC放在平面直角坐标
13、系中,使AB的中点位于坐标原点O(如图),ABC可以绕点O作任意角度的旋转(1)当点B在第一象限,纵坐标是时,求点B的横坐标;(2)如果抛物线(a0)的对称轴经过点C,请你探究:当,时,A,B两点是否都在这条抛物线上?并说明理由;设,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由OyxCBA11-1-14、已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图). (1)求字母a,b,c的值;(2)在直线x1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时PFM为正三角形
14、;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PMPN恒成立,若存在请求出t值,若不存在请说明理由.5、如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(8,0),点N的坐标为(6,4)(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:明代戏曲的少数民族书写研究
- 二零二五年度智慧城市人工费承包合同协议2篇
- 二零二五年度民房租赁合同终止协议范本
- 2025年度建筑模板施工班组质量保修服务合同
- 2025年度个人在线教育平台会员贷款合同(含课程更新)4篇
- 河南省郑州市智林学校高三上学期期末考试语文试题(含答案)
- 二零二五年度抹灰施工安全教育培训资源共享合同4篇
- 二零二五年度新型木门安装与绿色建材采购合同4篇
- 2025年度企业内部培训项目合同书范本4篇
- 2025年度苗木养护与生态园林景观改造合同4篇
- 博弈论全套课件
- CONSORT2010流程图(FlowDiagram)【模板】文档
- 脑电信号处理与特征提取
- 高中数学知识点全总结(电子版)
- GB/T 10322.7-2004铁矿石粒度分布的筛分测定
- 2023新译林版新教材高中英语必修一重点词组归纳总结
- 苏教版四年级数学下册第3单元第2课时“常见的数量关系”教案
- 弘扬中华传统文化课件
- 基于协同过滤算法的电影推荐系统设计
- 消防应急预案流程图
- 人教统编版高中语文必修下册第六单元(单元总结)
评论
0/150
提交评论