下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 兴趣点燃动力 心态成就未来函数知识点总结函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表
2、示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b
3、)的直线;正比例函数的图像是经过原点(0,0)的直线。(如下图)4. 正比例函数的性质一般地,正比例函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。5、一次函数的性质一般地,一次函数有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。k的符号b的符号函数图
4、像图像特征k>0b>0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b<0 y 0 x图像经过一、三、四象限,y随x的增大而增大。K<0b>0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b<0 y 0 x 图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。不等式一元一次不等式和它的解法一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫一元一次不等式。其标准形式是:ax+b>0或ax+b<0(a0)。1一元一次不等式经过去分母、去括号、移
5、项、合并同类项等变形后,能化为ax>b或ax<b,其中x是未知数,a、b是已知数且a0。2一元一次不等式的解法步骤与解一元一次方程类似,基本思想是化为最简形式(ax>b或ax<b,a0)后,再把系数化为1。应特别注意的是,当不等式的两边都乘以或除以同一个负数时,不等号的方向必须改变。一元一次不等式组和它的解法1一元一次不等式组及其解集:几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组。几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。2求不等式组的解集的过程,叫做解不等式组3解一元一次不等式组的步骤:(1)分别求出不
6、等式组中各个不等式的解集;(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。一次不等式(组)中参数取值范围求解技巧 已知一次不等式(组)的解集(特解),求其中参数的取值范围,以及解含方程与不等式的混合组中参变量(参数)取值范围,近年在各地中考卷中都有出现。求解这类问题综合性强,灵活性大,蕴含着不少的技能技巧。下面举例介绍常用的五种技巧方法。 一、 化简不等式(组),比较列式求解一次函数与不等式方法指引(1)熟知一次函数的图象与性质,实际问题一定要注意自变量取值.(2)一次函数的图象在X轴上方的部分X的取值相当于一次不等式大于0的解;一次函数的图象在X轴下方的部分X的取值相当于一次不等式小于0的解.(3)函数题一定要注意一种重要的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东警官学院《数字逻辑与EDA技术》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《移动应用开发A》2023-2024学年第一学期期末试卷
- 广东技术师范大学《计算机辅助设计》2023-2024学年第一学期期末试卷
- 广东海洋大学《环境大数据处理课程设计》2023-2024学年第一学期期末试卷
- 广东第二师范学院《人体解剖生理学实验》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《智能物流系统设计I》2023-2024学年第一学期期末试卷
- 《包装机械生产线》课件
- 《泪器病及治疗》课件
- 广东碧桂园职业学院《劳动教育II》2023-2024学年第一学期期末试卷
- 广安职业技术学院《网络舆情概论》2023-2024学年第一学期期末试卷
- 《中国古代文学史——李白》优秀PPT课件
- 机械设计制造及其自动化实习总结报告——某
- 角的概念推广说课课件.
- 压密注浆施工工艺
- 2019-2020学年江苏省徐州市九年级(上)期末英语试卷(解析版)
- 履带吊验收表
- AAEM的应用机理
- 2018-2019学年第一学期西城小学三年级数学期末试题
- GB-T-12137-2015-气瓶气密性试验方法
- 学生学习挑战书
- 烟叶种植及加工项目可行性研究报告写作范文
评论
0/150
提交评论