浅议甜菜碱与植物耐盐基因工程_第1页
浅议甜菜碱与植物耐盐基因工程_第2页
浅议甜菜碱与植物耐盐基因工程_第3页
浅议甜菜碱与植物耐盐基因工程_第4页
浅议甜菜碱与植物耐盐基因工程_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、浅议甜菜碱与植物耐盐基因工程论文导读:目前影响植物生长和产量的最主要环境胁迫因素是盐碱和干旱。较重要的、研究最多的是甜菜碱。基因工程,浅议甜菜碱与植物耐盐基因工程。关键词:甜菜碱,盐,基因工程 生长在自然界中的植物在长期的进化过程中形成了适应环境的形态结构、生理功能及生态特征,使植物本身与环境形成了一个相对和谐的统一体;另一方面,环境的变化又使植物受到逆境的影响,给植物的生长及经济产量造成一定的损失。目前影响植物生长和产量的最主要环境胁迫因素是盐碱和干旱。一、盐分对植物细胞的伤害和渗透调节物质盐分对植物细胞的伤害主要是生理干旱和离子毒害。植物细胞中的原生质膜,是一个半透性膜,它允许水

2、分自由透过,而其它物质只能有选择地通过。这样就使膜内存在的有机分子、无机离子等形成一定的渗透势。当细胞内的渗透势大于土壤溶液的渗透势时植物就能吸水;如果小于土壤溶液的渗透压时,植物就不能吸水,结果植物缺水干死。免费论文,基因工程。另一方面外界盐离子的大量进入,破坏了细胞中原有的离子平衡,进而影响细胞的正常代谢。过量的盐离子进入细胞质后,会使原生质凝聚、叶绿素破坏、蛋白质合成受到抑制、蛋白质水解作用加强,造成体内氨基酸积累。这些氨基酸有一部分会转化为丁二胺、戊二胺及游离氨,当它们达到一定浓度时细胞就会中毒死亡。与此同时,植物在长期的进化过程中也形成了一系列的适应机制来抵御盐胁迫的伤害,其中合成并

3、积累高浓度平衡渗透物质以调节细胞的渗透势就是一重要策略。在正常情况下,这些渗透物质是细胞代谢的一般组成物,它们具备以下特点:分子量小,水溶性好;在生理pH范围内呈电中性;本身不改变酶结构,且能维持酶结构的稳定;合成酶系统对盐胁迫敏感,且能在很短时间内积累到足以降低渗透势的水平。在这些有机溶质中,较重要的、研究最多的是甜菜碱。二、盐胁迫下甜菜碱对植物的保护作用甜菜碱对植物细胞的保护主要集中在渗透调节和保护酶活性方面。植物受盐碱或水分胁迫时,为了生长和生存必须保持其膨压。细胞质中积累大旱有机渗透调节剂如甜菜碱,而将细胞质中的无机渗透调节剂(主要是K离子)挤向液泡,使胞质与细胞内(液泡)外环境维持渗

4、透平衡,这样就避免了细胞质高浓度无机离子对酶和代谢的伤害。甜菜碱绝大部分存在于细胞质中,在占植物细胞体积90%的液泡中,却很难找到它的踪迹。因此甜菜碱随着盐胁迫强度的增加在细胞质中逐渐积累直到很高水平,从而调节渗透压,维持细胞的水分平衡,并且对细胞没有毒害作用。除此之外,甜菜碱还起到保护细胞内蛋白质和代谢酶类的活性,稳定膜结构的功能。对小麦施用外源甜菜碱和转BADH基因烟草的研究发现,甜菜碱能保护抗氧化酶系统如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸氧化酶(AsAPOD)和谷胱甘肽还原酶(GR)等的活性,增强细胞有效排除活性氧和氧自由基的能力,保证细胞质膜

5、和叶绿体膜结构的稳定性和完整性。同时它还能提高呼吸过程中的酶如异柠檬酸脱氢酶(IDH)、苹果酸脱氢酶(MDH)、琥珀酸脱氢酶(SDH)、细胞色素氧化酶(CO)和光呼吸途径中的羟基丙酮酸还原酶(HPR)、乙醇酸氧化酶(GO)等的活性,明显增强光呼吸过程,使植物减少或免受光抑制的破坏。免费论文,基因工程。保护叶绿体PSII颗粒,防止高盐浓度造成的外周蛋白脱落。三、甜菜碱的生物合成途径1、植物中的甜菜碱合成途径植物体内甜菜碱是在叶绿体内通过光或激素(如ABA)诱导合成的。一般认为甜菜碱的合成是以丝氨酸为原料,经过一系列的反应生成胆碱,再由胆碱经甜菜碱醛通过两步不可逆的氧化反应生成甜菜碱。这两步氧化反

6、应需要两个酶的催化:第一个是胆碱单氧化酶(choline monooxygenase,CMO),它催化胆碱氧化成甜菜碱醛(betaine aldehyde)。第二个是甜菜碱醛脱氢酶(betaine aldehydedehydrogenase,BADH,),它催化甜菜碱醛形成甜菜碱(betaine)。(1)胆碱单加氧酶(CMO)CMO是由核基因编码并定位于叶绿体基质中一种特殊的酶。其活性受盐或干旱胁迫的诱导。由CMO催化的氧化反应在叶绿体中进行。Rathinasabapathi等(1997)用RT-PCR的方法从菠菜的叶片中分离出了CMO的完整cDNA。开放读码框(ORF)(1320bp)编码一

7、个440个氨基酸的多肽,其中有一个60残基的转运肽(信号肽)。转运肽的大小和组成是一个典型的叶绿体基质靶向的信号肽,这与CMO定位于时绿体基质的意见完全一致。CMO基因中包含一个很大的启动子,重组实验表明CMO是单拷贝基因。菠菜中的CMO基因同BADH基因类似,都有一个胁迫应答的顺式调节组件,其表达可能受到盐胁迫的调控。(2)甜菜碱醛脱氢酶(BADH)与CMO基因的研究相比,BADH基因的研究则要深入得多。从不同植物中克隆出来的BADH基因全长稍有差异,其长度一般为1.51.8kb,包含一个1.5kb开放阅读框。BADH基因在整个植物基因组中一般至少有两个拷贝。目前为止,BADH基因已从大肠杆

8、菌、菠菜、山菠菜、大麦、高粱、水稻、等中得到克隆和鉴定,不同生物的BADH基因有较高的同源性。BADH是由单一核基因编码的多肽二聚体(Mr6064kD),几乎所有植物的BADH酶中都有一个高度保守的十肽区域,即VTLELGGKSP,这段序列可能与NAD的结合并与催化反应的位点有关(Ishitani等,1995)。免费论文,基因工程。但是不同物种间BADH的氨基酸序列差异很大。免费论文,基因工程。免费论文,基因工程。2、微生物中的甜菜碱合成途径(1)单酶催化合成途径在原核生物土壤细菌(Arthrobacterglobiformis)中甜菜碱合成关键基因是CodA,该基因编码胆碱氧化酶(COD)。

9、这个酶能独立催化胆碱生成甘氨酸甜菜碱的两步反应,即兼具胆碱单氧化酶和甜菜碱醛脱氢酶的催化功能。(2)双酶催化合成途径大肠杆菌中甜菜碱合成途径胆碱脱氢酶(CDH),在氧的参与下催化胆碱生成甜菜碱醛。而催化甜菜碱醛生成甜菜碱的酶同植物中一样,均为BADH。3、甜菜碱的甘氨酸合成途径通过甘氨酸合成甜菜碱的途径只是在最近才被发现。到目前为止,只在两个极端耐盐的海洋微生物中Ectothiorhodospirahalochloris 和 Actinopolysporahalophilia存在。在这些微生物中,甜菜碱由甘氨酸通过由S-腺苷四甲硫氨酸依赖的甲基转移酶GSMT和SDMT的三次N-甲基化作用催化合

10、成。从目前已转化成功的甜菜碱基因工程植株来看,尽管在它们体内都检测到了甜菜碱的积累并在胁迫下具有显著的保护作用,但没有一种转基因植物的甜菜碱含量能超过1mol/g FW ,这个水平比起许多能够自身合成并积累甜菜碱的物种来要低10100倍(Rhodes和Hanson,1993)。通过对转CMO基因烟草仔细研究后发现,无论是导入的甜菜碱代谢途径还是甜菜碱醛的毒性,均未对甜菜碱在转基因植株中的最终积累造成影响,而在施加外源胆碱后,却发现甜菜碱的含量大幅度增加。免费论文,基因工程。由此可知,是内源胆碱这一原料的供应不足限制了转基因植株中甜菜碱的最终含量。因此,通过甜菜碱基因工程来改善植物的耐盐性是有一定限度的,总之,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论