![2020-2021学年学年北师大版必修51.3.1等比数列的概念及通项公式学案_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/1/9ae14341-ff05-4f35-9e2b-9e303b8fa527/9ae14341-ff05-4f35-9e2b-9e303b8fa5271.gif)
![2020-2021学年学年北师大版必修51.3.1等比数列的概念及通项公式学案_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/1/9ae14341-ff05-4f35-9e2b-9e303b8fa527/9ae14341-ff05-4f35-9e2b-9e303b8fa5272.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3等比数列第1课时 等比数列的概念及通项公式自主预习学案自主预习学案-情景引入 %ing jing yin ru 从 1979年至 1999年在我国累计推广种植杂交水稻 35亿多亩,增产稻谷 3 500 亿公斤.年 增稻谷可养活 6 000 万人口.西方世界称他的杂交稻是东方魔稻”,并认为是解决下个世纪 世界性饥饿问题的法宝.世界杂交水稻之父-袁隆平在培冇某水稻新品种时,培育出第一代 120粒种子,并且从第一代起,由以后各代的每一粒种子都可以得到下一代的 120粒种子,到第 5 代时大约 可以得到这个新品种的种子多少粒?新知导学;:Ain zhi dao xue *1. 等比数列的定义一般地,
2、如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数, 那么这个数列叫作等比数列,这个常数叫作等比数列的公比.公比通常用字母q表示 (狞 0).2. 等比数列的通项公式:设等比数列“”的首项为 g,公比为 g,则通项公式是:如=(以 1(1工 0,狞 0).3. 等比中项:如果在“与 b 中插入一个数 G,使得“,G, b 版等比 数列,那么根据 等比数列的泄义,弓=纟,G2=,.我们称 G为,b的等比中项.4.等比数列的通项公式可以看作是 指数 型函数y=c(f(co,qHO).5. 等比数列的增减性(1) 当丄0 或 0彳1, 50 时,等比数列“”是递增数列.(2) 当炉
3、1,】0 或 0“1 ,山0时,等比数列“是递减数列.(3) 当。=1 时,等比数列“”是常数列.(4) 当 gO时,等比数列如是摆动数列.Zl ZHUYU - XI XUE-AN预习自测解析由题意知 f 5十 mg 十十旳二 15 , 解得7b 二 2 ,= 3aq2+ 4/ir.3 二才二 4.故选 C 3下列数列为等比数列的是(D )A. 0 0.0,0, B. 22-42,62C(?-1)2, (G2= abG二翩.这表明:只有同号的 两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.异号的两数没有等比 中项.反之,若 G?二“b(“bHO),则二纟,即“,G “成等比数列
4、.所以“,G ,b成等比数aG列 OG?二ab(ab=O).跟踪练习 3若仏 2“+2,3+3 成等比数列,求实数“的值.解析因为亿加十 2,3“十 3成等比数列,所以(2“ + 2)2= “(3a + 3).解得ci=- 1 或“二-4.因为当二-1 时,5 十 2,3“ + 3均为 0 ,故应舍去故“的值为-4.命题方向 4二等比数列的应用题例题 4 某人买了一辆价值 13.5 万元的新车,专家预测这种车每年按 10%的 速度贬值.(1) 用一个式子表示第“(“WNQ 年这辆车的价值.(2) 如果他打算用满 4 年时卖掉这辆车,他大概能得到多少钱?分析 1 根据题意,每年车的价值存在倍数关
5、系,所以能建立等比数列模型来解决.I 解析(1)从第一年起,每年车的价值(万元)依次设为:5 , “2 , “3 ,,”,由题意,得尙二 13.5 , “2 二 13.5(1 - 10%),“3 二 13.5(1 - 10%)2, .2 银行储蓄复利公式:按复利计算利息的一种储蓄,本金为“元,每期的利率为/,存期 为n ,由等匕邀列走义,知数列如是等比数列,首项 5 二 13.5 ,公比q = ( -10%) = 0.9 ,:.a=-3 4= 13.5 X (0.9) J.第“年车的价值为”二 13.5 X (0.9)万元.(2)当他用满 4年时,车的价值为心二 13.5 X (0.9)5-1
6、二 8.857.用满 4年时卖掉时,他大概能得 8.857 万元.r 规律总结常见等比数列应用题模型的求解方法(1) 产值模型:原来产值的基础数为N .平均增长率为p,对于时间“的总产值y = W+则本利和y = a( +r)n.3 银行储蓄单利公式:利息按单利计算,本金为“元,每期的利率为 r ,存期为”,则本 利和y =1)的容器盛满酒精后倒岀 1 L,然后加满水,再倒出 1 L混合溶液后又用水 加满,如此继续下去,问第次操作后溶液的浓度是多少?当“=2 时,至少应倒出几次后才 可能使酒精浓度低于 10%?I 解析开始的浓度为 1,操作一次后港液的浓度是二 1 -夕设操作”次后溶液的浓度是
7、 ,则操作n十 1次后溶液的浓度是如+1二血(1 - ) 所以构成以a -1 - 土为首项,g 二 1 -+为公比的等t 黴列所以 5 二(1 -办,即第“次操作后溶液的浓度是(1 - +)当“二 2 时, 由ai =,得心 4.因此,至少应倒 4次后才可以使酒精浓度低于 10%.命题方向 5构造等比数列的技巧317h列题 5设数列“满足关系式:如=0“ + 55鼻 2), t/i = -y.求数列“”的通项公式:问数列“”从第几项开始大于 0? (ln20.301 0, lg3=0.477 1)分析求“”的通项公式可考虑构造辅助数列的方法.解析由题意,得 66r+10 = |(t/M-l+1
8、0)(M2),33数列 a十 io是首项为尙十 io二办公比为湖等比数列,- io.令0 ,即(弓)10 ,两边取常用对数,得“11 ,A(lg3 - lg2)lr即叱 1 .含5 7gN+)flg3 - lg2数列仏从第 6项开始大于 0.规律总结 题中“伽十 10”中 T0“可以用如下方法求得:令” + 2 苏”一+X),即3x .Un二伽1十亍伽常用来求已知条件形如“如】二皿十心工 1厂的递推关系的通项公式,可以证明 + P -1 为等比数列.跟踪练习 5在数列“”中,若山=1,如 1=2 為+3(”21, GNJ,求数列如的通项公式.解析令 an+i +2 =2(an十 2),与已知an+1 =2an+ 3 比较知 2 = 3,:.an+i + 3 = 2(a” + 3),.仏+ 3是首项为 5 + 3=4 ,公比为 2的等比数列,.n+ 3 = (al+ 3)X2/,-,=2n*1,.皿= 2,+ l- 3.易混易错警示:ri hun yi cuo jing shiio=|x(|r-,=(|r|s -1十 5相比较,得专二 5 ,即 x 二 10.这种方法称为“构造等阕列法”,列题 6在等比数列伽中,心 小是方程 718兀+7=0的两个根,试求r isas十 t/9 = -y 误解、的是方程 18x + 7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度校园环境卫生保洁服务外包合同模板3篇
- 2025年度海洋资源开发合同意向书范本
- 2025年度国际时尚产品寄售与品牌授权合同
- 2025年度航空货运代理责任免除合同范本
- 2025年度知识产权侵权赔偿调解合同范本
- 2025年度国际能源项目合作合同范本(含价格条款)
- 2025年度医疗机构护工服务雇佣合同范本(含紧急救护)
- 2025年度养老护理员专业培训与雇用合同范本
- 2025年度文化创意产品开发合作合同书
- 2025年度股份公司合作融资贷款合同范本
- 国际贸易地理 全套课件
- GB/T 20878-2024不锈钢牌号及化学成分
- 某房屋建筑工程监理大纲
- 英语考纲词汇表3500词
- 主题一:人文之美 第7课《天下第一大佛-乐山大佛》 课件
- 印度与阿拉伯的数学
- 会阴切开伤口裂开的护理查房
- 《钢铁是怎样炼成的》选择题100题(含答案)
- 2024年国新国际投资有限公司招聘笔试参考题库含答案解析
- 食堂餐厅服务方案投标方案(技术标)
- Creo-7.0基础教程-配套课件
评论
0/150
提交评论