![第五章相交线与平行线教案_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/3/7800ca74-df63-482d-9466-b69bd00d96cd/7800ca74-df63-482d-9466-b69bd00d96cd1.gif)
![第五章相交线与平行线教案_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/3/7800ca74-df63-482d-9466-b69bd00d96cd/7800ca74-df63-482d-9466-b69bd00d96cd2.gif)
![第五章相交线与平行线教案_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/3/7800ca74-df63-482d-9466-b69bd00d96cd/7800ca74-df63-482d-9466-b69bd00d96cd3.gif)
![第五章相交线与平行线教案_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/3/7800ca74-df63-482d-9466-b69bd00d96cd/7800ca74-df63-482d-9466-b69bd00d96cd4.gif)
![第五章相交线与平行线教案_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-11/3/7800ca74-df63-482d-9466-b69bd00d96cd/7800ca74-df63-482d-9466-b69bd00d96cd5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题5.1.1 相交线课时1主备修订审核教学目标知识与能力了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。过程与方法理解对顶角性质的推导过程,并会用这个性质进行简单的计算。情感态度与价值观通过辨别对顶角与邻补角,培养识图的能力。趣。教材分析教学重点邻补角和对顶角的概念及对顶角相等的性质。教学难点在较复杂的图形中准确辨认对顶角和邻补角。教学准备教师准备学生准备教学过程教学环节主案(集体备课部分)副案(个性化修改)设疑自探一、设疑自探(10分钟)(一)创设情境,导入新课1.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀
2、刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .2.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征? (二)根据课题,提出问题 看到这个课题,你想知道什么?请提出来。(预设:1、形成了两组角度数相等;2、存在角度的等量关系;3、始终产生四个角,存在互补角。)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出
3、示自探提示,组织学生自探。自探提示:1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?_O_D_C_B_A例如:(1)AOC和BOC有一条公共边OC,它们的另一边互为 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 (2)AOC和BOD (有或没有)公共边,但AOC的两边分别是BOD两边的 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 。2.根据观察和度量完成下表:两直线相交所形成的角分类位置关系数量关系 3.用语言概括邻补角、对顶角概念. 的两个角叫邻补角。 的
4、两个角叫对顶角。4.探究对顶角性质.在1题图中,AOC的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等.注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?解疑合探二、解疑合探(15分钟)(一).小组合探。1.如图所示,1和2是对顶角的图形有( )毛 A.1个 B.2个 C.3个 D.4个2.如图,三条直线AB,CD,EF相交于一点O, AOD的对顶角是_,AOC的邻补角是_,若AOC=50°
5、;,则BOD=_,COB=_,AOE+DOB+COF=_。 (二).全班合探。3.如图,直线AB,CD相交于O,OE平分AOC,若AOD-DOB=50°,求EOB的度数.4.如图,直线a,b,c两两相交,1=23,2=68°,求4的度数质疑再探三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.运用拓展四、运用拓展(12分钟)(一) 根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同
6、桌)!(二) 根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:若4条不同的直线相交于一点,图中共有几对对顶角?若n条不同的直线相交于一点呢?板书设计课题5.1.2 垂线(1)课时1主备修订审核教学目标知识与能力理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。过程与方法掌握点到直线的距离的概念,并会度量点到直线的距离。情感态度与价值观掌握垂线的性质,并会利用所学知识进行简单的推理。趣。教材分析教学重点垂线的定义及性质。教学难点垂线的画法教学准备教师准备
7、学生准备教学过程教学环节主案(集体备课部分)副案(个性化修改)设疑自探一、设疑自探(10分钟)(一)创设情境,导入新课1. 如图,若1=60°,那么2=_、3=_、4=_ 2. 改变上图中1的大小,若1=90°,请画出这种图形,并求出此时2、3、4的大小。(二)根据课题,提出问题 看到这个课题,你想知道什么?请提出来。(预设:1、产生90度的图形状态;2、怎么画90度的角;3、有互补角)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学
8、生自探。自探提示:1.阅读课本P3的内容,回答上面所画图形中两条直线的关系是_,知道两条直线互相_是两条直线相交的特殊情况。2. 用语言概括垂直定义两条直线相交,所成四个角中有一个角是_时,我们称这两条直线_其中一条直线是另一条的_,他们的交点叫做_。3垂直的表示方法:垂直用符号“”来表示,若“直线AB垂直于直线CD, 垂足为O”,则记为_,并在图中任意一个角处作上直角记号,如下图。4.垂直的推理应用:(1)AOD=90° ( )ABCD ( )(2) ABCD ( ) AOD=90°( )5垂直的生活应用观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给
9、大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?小组内讨论解决自探中未解决的问题;解疑合探二、解疑合探(15分钟)(一).小组合探。1用三角尺或量角器画已知直线L的垂线.(1)已知直线L,画出直线L的垂线,能画几条? L小组内交流,明确直线L的垂线有_条,即存在,但位置有不_性。 (二).全班合探。(2)怎样才能确定直线L的垂线位置呢?在直线L上取一点A,过点A画L的垂线, 能画几条?再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条? B A 从中你能得出什么结论? _ 2变式训练,请完成课本P5练习第2题的画图。画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在
10、_的垂线.质疑再探三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.运用拓展四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二) 根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )
11、2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).填空题.1.如图1,OAOB,ODOC,O为垂足,若AOC=35°,则BOD=_.2.如图2,AOBO,O为垂足,直线CD过点O,且BOD=2AOC,则BOD=_.3.如图3,直线AB、CD相交于点O,若EOD=40°,BOC=130°,那么射线OE 与直线AB的位置关系是_.(三)解答题.1.已知钝角AOB,点D在射线OB上. (1)画直线DEOB (2)画直线DFOA,垂
12、足为F.2.已知:如图,直线AB,射线OC交于点O,OD平分BOC,OE平分AOC.试判断OD 与OE的位置关系.板书设计课题5.1.2 垂线(2)课时1主备修订审核教学目标知识与能力经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。过程与方法了解垂线段的概念, ,体会点到直线的距离的意义, 并会度量点到直线的距离。情感态度与价值观让学生在学习中找到对数学的兴趣趣。教材分析教学重点了解垂线段最短的性质教学难点了解垂线段最短的性质教学准备教师准备学生准备教学过程教学环节主案(集体备课部分)副案(个性化修改)设疑自探一、设疑自探(10分钟)(一)创
13、设情境,导入新课1.上学期我们学习过“什么什么最短”的几何知识,还记得吗? 。 2. 思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?(二)根据课题,提出问题 (预设:1、两点间线段最短与本节有什么联系吗?;2、关于点到直线的距离垂线段最短为什么?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点
14、就是直线L上的某个点。那么最短渠道问题会变成是怎样的数学问题? (提示:用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?) 2.学具感受_l_P_a_A 自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA 长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。 3.画图验证 (1)画直线L,在L外取一点P; (2)过P点出POL,垂足为O; (3)点A1,A2,A3在L上,连接PA、PA2、PA3; (4)用度量法比较线段PO、PA1、PA
15、2、PA3的大小,.得出线段 最小。 4.归纳结论. 连接直线外一点与直线上各点的所有线段中, .简单说成: . 5.知识类比 (1)垂线段与垂线有何区别联系? (2)垂线段与线段有何区别与联系?7.解决问题:此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。7.探究“点到直线的距离”?定义: (1) 学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍: 叫做点到直线的距离。(2)对照课本P5图5.1-9,回答线段PO、PA1、PA2、PA3、PA4中,哪一条或几条线段的长度是点P到直线L的距离? (3) 如果课本P5图5.1-8中比例尺为1:10000
16、0,试计算农田P到小河的距离有多远?小组内讨论解决自探中未解决的问题;解疑合探二、解疑合探(15分钟)(一).小组合探。判断对错,并说明理由:. (1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离. (2)如图,线段AE是点A到直线BC的距离. (3)如图,线段CD的长是点C到直线AB的距离. (二).全班合探。已知直线a、b,过点a上一点A作ABa,交b于点B,过B作BCb交a于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离. 质疑再探三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有
17、那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.运用拓展四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图,ACBC,C为垂足,CDAB,D为垂足,BC=8,CD=4.8,BD=7.4,AD=3.6,AC= 6,那么点C到AB的距离是_,点A到BC的距离是_,点B到CD 的距离是_
18、,A、B两点的距离是_. 2.如图,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短, 因此线段AD的长是点A到BF的距离,对小明的说法,你认为对吗? 3.用三角尺画一个是30°的AOB,在边OA上任取一点P,过P作PQOB, 垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗?板书设计课题5.1.3 同位角、内错角、同旁内角课时1主备修订审核教学目标知识与能力理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.过程与方法通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.情感态度与价
19、值观通过“三线八角”基本图形,使学生认识几何图形的位置美.趣。教材分析教学重点同位角、内错角、同旁内角的识别。教学难点较复杂图形中同位角、内错角、同旁内角的识别。教学准备教师准备学生准备教学过程教学环节主案(集体备课部分)副案(个性化修改)设疑自探一、设疑自探(10分钟)(一)创设情境,导入新课1、观察图形,你看到了哪几个角?2、你能说出这些角的位置关系吗?(二)根据课题,提出问题 看到这个课题,你想知道什么?请提出来。(预设:1、如何区别角的位置;2、没有看到相等的角呀;3、必须是三条直线吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充
20、为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1.如图(1),将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线。2. 如图(3)是“直线 , 被直线 所截”形成的图形(1)1与5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。(2)3与5这对角在两被截线AB,CD的 ,在截线EF的 ,形如
21、“ ” 字型.具有这种关系的一对角叫内错角。(3)3与6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫同旁内角。3.找出图(3)中所有的同位角、内错角、同旁内角。小组内讨论解决自探中未解决的问题;解疑合探二、解疑合探(15分钟)(一).小组合探。例1.如图(2)中1与2,3与4, 1与4分别是哪两条直线被哪一条直线所截形成的什么角? (二).全班合探。例2.课本P7的例题质疑再探三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或
22、不明白的地方?请提出来,大家一起来解决.运用拓展四、运用拓展(12分钟)(三) 根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(四) 根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图(4),下列说法不正确的是( )A、1与2是同位角 B、2与3是同位角C、1与3是同位角 D、1与4不是同位角2.如图(5),直线AB、CD被直线EF所截,A和_是同位角,A和_是内错角,A和_是同旁内角.3.如图(6), 直线DE截AB,
23、AC, 构成八个角:指出图中所有的同位角、内错角、同旁内角.A与5, A与6, A与8, 分别是哪一条直线截哪两条直线而成的什么角?4.如图(7),在直角ABC中,C90°,DEAC于E,交AB于D .指出当BC、DE被AB所截时,3的同位角、内错角和同旁内角.试说明123的理由.(提示:三角形内角和是1800)板书设计课题5.2.1平行线课时1主备修订审核教学目标知识与能力了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.过程与方法会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.情感态度与价值观通过对本
24、课知识的探究与应用,提高学生的逻辑思维能力趣。教材分析教学重点探索和掌握平行公理及其推论.教学难点对平行线本质属性的理解,用几何语言描述图形的性质.教学准备教师准备学生准备教学过程教学环节主案(集体备课部分)副案(个性化修改)设疑自探一、设疑自探(10分钟)(一)创设情境,导入新课1.如图所示 :转动木条,你发现了什么?2.当你观察到平行时候,角度有什么变化和联系?并且看到过一点有几条直线与该直线平行? (二)根据课题,提出问题 看到这个课题,你想知道什么?请提出来。(预设:1、看到过一点只有一条直线与一只直线平行;2、存在角度的等量关系;3、始终产生四个角,存在互补角。4、平行时候角度有相等
25、的吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1.两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2,在平面内,两条直线除了相交外,还有别的位置关系吗?请同学门观察黑板相对的两条横及格本中两条横线,若把他们向两方延长,看成直线,他们还是相交直线吗?3把三根木条看成三条直线,观察三根木条之间的关系,有几种可能性?4自我演示. 顺时针转动木条b两圈,然后思考:把a、b 想像成两端可以无限延伸的两条直线,顺时针转动b时,
26、直线b与直线a的交点位置将发生什么变化?在这个过程中, 有没有直线b与a不相交的位置?5.同学交流并形成共识.转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a 的交点就会从A点的右边又转动A点的左边可以想象一定存在一个直线b的位置,它与直线a左右两旁都 如下图7.结合演示的结论,用自己的语言描述平行线的认识:平行线是同一 的两条直线平行线是 交点的两条直线7.尝试用数学语言描述平行定义 特别注意:直线a与b是平行线,记作“ ”,这里“ ”是平行符号.思考: 如何确定两条直线的位置关系?.小组
27、内讨论解决自探中未解决的问题;解疑合探二、解疑合探(15分钟)(一).小组合探。1.在转动教具木条b的过程中,有几个位置能使b与a平行?2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗? (二).全班合探。3.观察画图、归纳平行公理及推论. (1)对照垂线的第一性质说出画图所得的结论.平行公理: (2)比较平行公理和垂线的第一条性质. 共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且是 的. 不同点:平行公理中所过的“一点”要在已知直线 ,两垂线性质中对“一点”没有限制,可在直线 ,
28、也可在直线 .4.探索平行公理的推论.(1)直观判定过B点、C点的a的平行线b、c是互相 .(2)从直线b、c产生的过程说明直线b直线c.(3)用三角尺与直尺用平推方法验证bc.(4)用数学语言表达这个结论 用符号语言表达为:如果 那么 质疑再探三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.运用拓展四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生
29、自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:填空题.1.在同一平面内,两条直线的位置关系有_2、两条直线L1与L2相交点A,如果L1L,那么L2与L( ),这是因为( )。3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必_.4.两条直线相交,交点的个数是_,两条直线平行,交点的个数是_个.判断题.1.不相交的两条直线叫做平行线.( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )3.过一点有且只有
30、一条直线平行于已知直线.( )解答题.1.读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.板书设计课题5.2.2平行线的判定课时1主备修订审核教学目标知识与能力使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。过程与方法初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。情感态度与价值观通过对本课知识的探究与应用,
31、提高学生的逻辑思维能力趣。教材分析教学重点在观察实验的基础上进行公理的概括与定理的推导教学难点定理形成过程中的逻辑推理及其书面表达。教学准备教师准备学生准备教学过程教学环节主案(集体备课部分)副案(个性化修改)设疑自探一、设疑自探(10分钟)(一)创设情境,导入新课1.如图所示 :观察思考:过点P画直线CDAB的过程,三角尺起了什么作用?图中,1和2什么关系?(二)根据课题,提出问题 看到这个课题,你想知道什么?请提出来。(预设:1、判定是不是就是证明出结论?2、若证明两直线平行,怎么证明;3、证明过程怎么写?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题
32、归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:(一)平行线判定方法1:1.观察思考:过点P画直线CDAB的过程,三角尺起了什么作用?图中,1和2什么关系?2.判定方法1: 应用格式: 。12(已知)简单说成: 。 ABCD(同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:3.思考:教材14页(试着写出推理过程)判定方法2: 应用格式: 。23(已知)简单说成: 。 ab(内错角相等,两直线平行)4.将上题中条件改变为24180°,能得到ab吗?(试写出推理
33、过程)判定方法3: 应用格式: 。 24180°(已知)简单说成: 。ab(同旁内角互补,两直线平行)小组内讨论解决自探中未解决的问题;解疑合探二、解疑合探(15分钟)(一).小组合探。1.例 教材15页2.练一练:教材15页练习1、2、3(二).全班合探。总结直线平行的条件 (2)图1方法1:若ab,bc,则ac。即两条直线都与第三条直线平行,这两条直线也互相平行。方法2:如图1,若13,则ac。即 。方法3:如图1,若 。方法4:如图1,若 。方法5:如图2,图2若ab,ac,则bc。即在同一平面内,垂直于同一条直线的两条直线互相平行。教师出示展示与评价分工。质疑再探三、质疑再探
34、:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.运用拓展四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。图1为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:选择题:1.如图1所示,下列条件中,能判断ABCD的是( )毛图2A.BAD=BCD
35、B.1=2; C.3=4 D.BAC=ACD 2.如图2所示,如果D=EFC,那么( )图3 A.ADBC B.EFBC C.ABDC D.ADEF3.下列说法错误的是( ) A.同位角不一定相等 B.内错角都相等 C.同旁内角可能相等 D.同旁内角互补,两直线平行填空题:1.如图3,如果3=7,或_ _,那么_,理由是_ _;如果5=3,或_ _,那么_, 理由是_ _; 如果2+ 5= _ 或者_,那么ab,理由是_ _.图42.如图4,若2=6,则_,如果3+4+5+6=180°, 那么_,如果9=_,那么ADBC;如果9=_,那么ABCD.3.在同一平面内,若直线a,b,c满
36、足ab,ac,则b与c的位置关系是_.4.如图所示,BE是AB的延长线,量得CBE=A=C. (1)由CBE=A可以判断_,根据是_.(2)由CBE=C可以判断_,根据是_.六、拓展延伸1、已知直线a、b被直线c所截,且1+2=180°,试判断直线a、b的位置关系,并说明理由.2、如图,已知,试问EF是否平行GH,并说明理由。3.如图所示,已知1=2,AC平分DAB,试说明DCAB.4.如图所示,已知直线EF和AB,CD分别相交于K,H,且EGAB,CHF=600,E=300试说明ABCD. 5、如图所示,已知直线a,b,c,d,e,且1=2,3+4=180°,则a与c平行
37、吗?为什么?板书设计课题5.3.1平行线的性质课时1主备修订审核教学目标知识与能力使学生理解平行线的性质,能初步运用平行线的性质进行有关计算过程与方法通过本节课的教学,培养学生的概括能力和“观察猜想证明”的探索方法,培养学生的辩证思维能力和逻辑思维能力情感态度与价值观培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性趣。教材分析教学重点平行线性质的研究和发现过程是本节课的重点教学难点正确区分平行线的性质和判定是本节课的难点教学准备教师准备学生准备教学过程教学环节主案(集体备课部分)副案(个性化修改)设疑自探一、设疑自探(10分钟)(一)创设情境,导入新课 1、观察思考:
38、教材19页思考(二)根据课题,提出问题 看到这个课题,你想知道什么?请提出来。(预设:1、判定和性质的区别是什么?2、性质在证明题中的应用;3、性质与判定定理一样使用吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:活动:1.完成教材19页探究 同位角 。2.两条平行线被第三条直线所截, 。 。 ab(已知) 15(两直线平行,同位角相等) ) ab(已知 353.简单说成:两直线平行 。 ( )ab(已知)36180°
39、证明性质的正确性:4.性质1性质2:如右图,ab(已知)12( )又31(对顶角相等)。23(等量代换)。5.性质1性质3:如右图,ab(已知)12( )又 ( )。 。解疑合探二、解疑合探(15分钟)(一).小组合探。两条平行线的距离:1、如图,已知直线ABCD,E是直线CD上任意一点,过E向直线AB作垂线,垂足为F,这样做出的垂线段EF的长度是平行线的距离。2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变3、对应练习:如右图,已知:直线mn,A、B为直线n上的两点,C、D为直线m上 的两点。 (1)请写出图中面积相等的各对三角形; (2)如果A、B、C为三个定点,点D在m上移动
40、。那么,无论D点移动到任何位置,总有三角形 与三角形ABC的面积相等,理由是 。(二).全班合探。1.例 教材15页2.练一练:教材15页练习1、2、3质疑再探三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.运用拓展四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运
41、用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图1所示,ABCD,则与1相等的角(1除外)共有( )毛A.5个 B.4个 C.3个 D.2个2.如图2所示,CDAB,OE平分AOD,OFOE,D=50°,则BOF为( ) A.35° B.30° C.25° D.20°3.1和2是直线AB、CD被直线EF所截而成的内错角,那么1和2 的大小关系是( ) A.1=2 B.1>2; C.1<2 D.无法确定4.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( ) A.向右
42、拐85°,再向右拐95° B.向右拐85°,再向左拐85° C.向右拐85°,再向右拐85° D.向右拐85°,再向左拐95°(二)填空题:1.如图3所示,ABCD,D=80°,CAD:BAC=3:2,则CAD=_,ACD=_.2.如图4,若ADBC,则_=_,_=_,ABC+_=180° 若DCAB,则_=_,_=_,ABC+_=180°. (4) (5) (6)3.如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天
43、后公路准确接通, 则乙地所修公路的走向是_,因为_.4.(2002.河南)如图6所示,已知ABCD,直线EF分别交AB,CD于E,F,EG平分B-EF,若1=72°,则2=_.(三)解答题1如图,ABCD,1102°,求2、3、4、5的度数,并说明根据?2如图,EF过ABC的一个顶点A,且EFBC,如果B40°,275°,那么1、3、C、BACBC各是多少度,并说明依据?3、如图,已知:DECB,1=2,求证:CD平分ECB.【拓展延伸】1. 如图所示,把一张长方形纸片ABCD沿EF折叠,若EFG=50°,求DEG的度数.2如图所示,已知:AE平分BAC,CE平分ACD,且ABCD求证:1+2=90°证明: ABCD,(已知)BAC+ACD=180°,( )又 AE平分BAC,CE平分ACD,( ),( ) 即 1+2=90° 结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 。推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 。板书设计课题5.3.2命题、定理课时1主备修订审核教学目标知识与能力掌握命题的概念,并能分清命题的组成部分.过程与方法经历判断命题真假的过程,对命题的真假有一个初步的了解。初步培养不同几何语言相互转化的能力。情感态度与价值观初步
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对技术研发产品进行在次加工的合同范本(3篇)
- 2024-2025学年河南省青桐鸣大联考高一上学期12月月考历史试卷
- 2025年双方共同签署的离婚协议
- 2025年个人购置豪华花园房合同范文
- 2025年九台市报社资源共享合作协议
- 2025年炊具挂盘项目立项申请报告模板
- 2025年策划合作账户管理解除协议书范本
- 2025年配药中心项目提案报告模稿
- 2025年供应商合作关系协议文本
- 2025年中国近距离运输合同规定
- 2025年八省联考四川高考生物试卷真题答案详解(精校打印)
- 《供电营业规则》
- 企业员工退休管理规章制度(3篇)
- 执行总经理岗位职责
- 2025年中铁十二局集团招聘笔试参考题库含答案解析
- NS3000计算机监控系统使用手册
- 小学生情绪调适课件
- 2025蛇年中小学春节寒假安全教育课件模板
- 《黑神话:悟空》跨文化传播策略与路径研究
- 员工食堂服务外包运营管理方案
- DB31-T 329.17-2019 重点单位重要部位安全技术防范系统要求 第17部分:监管场所
评论
0/150
提交评论