




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学必修5 第一章 解三角形复习一、知识点总结【正弦定理】1正弦定理: (r为三角形外接圆的半径).2.正弦定理的一些变式:;(iv)3两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解)【余弦定理】1余弦定理: 2.推论:.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角.【面积公式】已知三角形的三边为a,b,c, 1.= =2r2sinasinbsinc(其中为三角形内切圆半径)2.设,(海伦公式)【三角形中的常见结论】(1)(2) ,;(3)
2、若若(大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边(5) 锐角三角形三内角都是锐角三内角的余弦值为正值任意两边的平方和大于第三边的平方.钝角三角形最大角是钝角最大角的余弦值为负值(6)中,a,b,c成等差数列的充要条件是.(7) 为正三角形的充要条件是a,b,c成等差数列,且a,b,c成等比数列.二、题型汇总题型1【判定三角形形状】判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在中,由余弦定理可知:(注意:)(3) 若,则a=b或.例1.在中,且,试判断形状.题型2【解
3、三角形及求面积】一般地,把三角形的三个角a,b,c和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在中,求的值例3.在中,内角对边的边长分别是,已知,()若的面积等于,求;()若,求的面积题型3【证明等式成立】证明等式成立的方法:(1)左右,(2)右左,(3)左右互相推.例4.已知中,角的对边分别为,求证:.题型4【解三角形在实际中的应用】实际问题中的有关概念:仰角 俯角 方位角 方向角 (1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1)(2)方位角:从指北方向顺时针转到目标方向线的水平角,如
4、b点的方位角为(如图2)(3)方向角:相对于某一正方向的水平角(如图3)北偏东°即由指北方向顺时针旋转°到达目标方向北偏西°即由指北方向逆时针旋转°到达目标方向南偏西等其他方向角类似 例5如图所示,货轮在海上以40km/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在b点观测灯塔a的方位角为110°,航行半小时到达c点观测灯塔a的方位角是65°,则货轮到达c点时,与灯塔a的距离是多少?解三角形高考题精选1的三个内角为,求当a为何值时,取得最大值,并求出这个最大值。解:由
5、所以有 当2.。设锐角三角形abc的内角a、b、c的对边分别为a、b、c,a=2bsina。()求b的大小; ()求的取值范围。解:()由a=2bsina,根据正弦定理得sina=2sinbsina,所以,由为锐角三角形得。()。由为锐角三角形知,。,所以。由此有,所以,cosa+sinc的取值范围为。3设的内角所对的边长分别为,且()求的值; ()求的最大值4.在中,内角a、b、c的对边长分别为、,已知,且 求b解法一:在中则由正弦定理及余弦定理有:化简并整理得:.又由已知.解得.解法二:由余弦定理得: .又 ,。所以 又 ,即由正弦定理得,故 由,解得。5. 已知的内角,及其对边,满足,求
6、内角解:由及正弦定理得从而又故所以6.(12)的内角、的对边分别为、,已知,求。7 如图,在abc中,abc90°,ab,bc1,p为abc内一点,bpc90°. (1)若pb,求pa;(2)若apb150°,求tanpba.解:(1)由已知得pbc60°,所以pba30°.在pba中,由余弦定理得pa2.故pa.(2)设pba,由已知得pbsin .在pba中,由正弦定理得,化简得cos 4sin .所以tan ,即tanpba.8.的内角的对边分别为,已知.()求; ()若,的面积为.求的周长.解:(i) 由已知及正弦定理的,即,故,可得,(ii) 由已知,又,由已知及余弦定理得,故,从而,的周长为9. 如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个侧点与现测得,并在点测得塔顶的仰角为,求塔高解:在中,由正弦定理得所以 在 中10如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西的方向处,此时两船相距20海里
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何科学护理老年认知障碍
- 针对工业互联网平台的2025年入侵检测系统:异常行为分析与优化实践报告
- 智能化升级改造对城市污水处理厂设备寿命影响研究报告
- 2025年农业机械化智能化发展中的农业产业结构优化与升级报告
- 2025年餐饮业会员营销活动效果评估与客户忠诚度增长报告
- 2025年“健康中国”战略下医疗健康产业投资策略与风险控制研究报告
- 量子计算技术在金融风险模拟中的大数据分析与风险管理研究报告
- 数字孪生在城市公共空间规划中的互动体验设计报告
- 2025细胞治疗临床试验与审批流程中的临床试验伦理审查伦理学案例报告
- 2025年旅游地产项目区域特色规划与生态保护研究报告
- 楼梯 栏杆 栏板(一)22J403-1
- 二年级下册数学教案 《生活中的大数》练习课 北师大版
- GB∕T 16762-2020 一般用途钢丝绳吊索特性和技术条件
- 电网施工作业票模板
- 精选天津市初中地理会考试卷及答案
- T∕CAEPI 31-2021 旋转式沸石吸附浓缩装置技术要求
- 国家级高技能人才培训基地建设项目实施管理办法
- 彩盒成品检验标准
- 落地单排脚手架
- 高层购物中心AAC墙体板材施工方案
- 人教精通版小学英语五年级下册期末测试
评论
0/150
提交评论