2022年中考数学二轮复习学案_专题05《统计与概率的应用》(含答案)_第1页
2022年中考数学二轮复习学案_专题05《统计与概率的应用》(含答案)_第2页
2022年中考数学二轮复习学案_专题05《统计与概率的应用》(含答案)_第3页
2022年中考数学二轮复习学案_专题05《统计与概率的应用》(含答案)_第4页
2022年中考数学二轮复习学案_专题05《统计与概率的应用》(含答案)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题五统计与概率的应用 统计【例1】(荆门)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60x709a70x80360.480x9027b90x100c0.2请根据上述统计图表,解答下列问题:(1)在表中,a_0.1_,b_0.3_,c_18_;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?分析:(1)根据表中数据

2、可求抽查的学生数,从而可求a,b,c的值;(2)根据(1)中c值,可将频数分布直方图补充完整;(3)根据平均数的定义和表中数据可求;(4)根据表中数据可求解:(2)补图略(3)平均成绩是81分(4)800×(0.30.2)400,即“优秀”等次的学生约有400人概率【例2】(江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;游戏结束前双方均不知道对方“点数

3、”;判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为_;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率分析:(1)甲摸牌数字是4与5则获胜,直接利用概率公式求解即可;(2)先根据题意画出树状图,再根据树状图列出甲、乙的“最终点数”,从而求得答案解:(2)画树状图:则共有

4、12种等可能的结果,列表:甲54567甲“最终点数”91000乙5567467457456乙“最终点数”100090091009100获胜情况乙甲甲甲甲甲乙乙平乙乙平乙获胜的概率为 1(大连)为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A0x4.04B4.0x6.513C6.5x9.0 D9.0x11.5 E11.5x14.06Fx4.03 根据以上信息,解答下列问题:(1)家庭用水量在4.0x6.5范围内的家庭有_13_户,在6.5x9.0范围内的家庭数占被调查家庭数的百分比是_30_%;(2)本次

5、调查的家庭数为_50_户,家庭用水量在9.0x11.5范围内的家庭数占被调查家庭数的百分比是_18_%;(3)家庭用水量的中位数落在_C_组(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数解:(4)估计该月用水量不超过9.0吨的家庭数为200×128(户)2(烟台)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图利用图中所提供的信息解决以下问题:小明一共统计了_150_个评

6、价;请将图1补充完整;图2中“差评”所占的百分比是_13.3%_;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率解:(1)“好评”一共有150×60%90(个),补图略(2)列表:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,两人中至少有一个给“好评”的概率是1(泰州)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整

7、的频数分布表及频数分布直方图最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.2850,a18÷500.36(2)b50×0.2010,补图略(3)1500×0.28420(人),估计该校最喜爱围棋的学生大约有420人2(陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们

8、分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得

9、任何奖品根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率解:(1)(2)画树状图(略),由树状图可知 共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为3(遵义)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A,B,C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D,E,F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是_;(2)若甲、乙均可在本层移动用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率;黑色方块所构拼图是中心对称图形的概率是_.解:(2)由树状图可知,黑色方块所构拼图是轴对称图形的概率P4(大庆)为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论