下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、优秀学习资料欢迎下载六年奥数综合练习题十八答案(列方程解应用题)一、列简易方程解应用题10x+1 ,从而有3( 105+x ) =10x+1 ,7x 299999,x 42857。答:这个六位数为 142857。说明:这一解法的关键有两点:示出来,这里根据题目的特点,采用“整体”设元的方法很有特色。( 1)是善于分析问题中的已知数与未知数之间的数量关系; (2)是一般语言与数学的形式语言之间的相互关系转化。因此,要提高列方程解应用题的能力,就应在这两方面下功夫。例 2 有一队伍以1.4 米 /秒的速度行军, 末尾有一通讯员因事要通知排头,于是以 2.6 米/秒的速度从末尾赶到排头并立即返回排尾
2、,共用了10 分 50 秒。问:队伍有多长?分析:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。如果设通讯员从末尾到排头用了x 秒,那么通讯员从排头返回排尾用了(650-x )秒,于是不难列方程。解:设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6 ( 650-x )+1.4( 650-x)。解得 x 500。推知队伍长为( 2.6-1.4)× 500=600(米)。答:队伍长为 600 米。说明:在设未知数时,有两种办法:一种是设直接未知数,求什么、设什么;另一
3、种设间接未知数,当直接设未知数不易列出方程时,就设与要求相关的间接未知数。对于较难的应用题,恰当选择未知数,往往可以使列方程变得容易些。例 3 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6 千米 /时,骑车人速度为10.8 千米 /时,这时有一列火车从他们背后开过来,火车通过行人用22 秒,通过骑车人用26 秒,这列火车的车身总长是多少?分析:本题属于追及问题,行人的速度为3.6 千米 /时 =1 米 /秒,骑车人的速度为10.8 千米 /时 =3 米 /秒。火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差。如果设火车的速度为x 米
4、/秒,那么火车的车身长度可表示为(x-1)× 22 或( x-3 )× 26,由此不难列出方程。解:设这列火车的速度是x 米 /秒,依题意列方程,得( x-1)× 22=( x-3)× 26。解得 x=14 。所以火车的车身长为( 14-1)× 22=286 (米)。答:这列火车的车身总长为286 米。例 4 如图,沿着边长为90 米的正方形,按逆时针方向,甲从A 出发,每分钟走65 米,乙从B 出发,每分钟走 72 米。当乙第一次追上甲时在正方形的哪一条边上?优秀学习资料欢迎下载分析:这是环形追及问题,这类问题可以先看成“直线”追及问题,求出
5、乙追上甲所需要的时间,再回到“环行”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上。解:设追上甲时乙走了x 分。依题意,甲在乙前方3× 90=270 (米),故有72x 65x+270 。由于正方形边长为90 米,共四条边,故由可以推算出这时甲和乙应在正方形的DA 边上。答:当乙第一次追上甲时在正方形的DA 边上。例 5 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶。已知船在静水中的速度为 8 千米 /时,平时逆行与顺行所用的时间比为2 1。某天恰逢暴雨,水流速度为原来的2 倍,这条船往返共用9 时。问:甲、乙两港相距多少千米?分析:这是流水
6、中的行程问题:顺水速度 =静水速度 +水流速度,逆水速度 =静水速度 -水流速度。解答本题的关键是要先求出水流速度。解:设甲、乙两港相距 x 千米,原来水流速度为a 千米 /时根据题意可知, 逆水速度与顺水速度的比为2 1,即( 8-a)( 8 a) 1 2,再根据暴雨天水流速度变为2a 千米 /时,则有解得 x=20 。答:甲、乙两港相距20 千米。例 6 某校组织150 名师生到外地旅游,这些人5 时才能出发,仅有一辆可乘50 人的客车,车速为36 千米 /时,学校离火车站21往返,故时间来不及,只能乘车与步行同时进行。如果步行每小时能走人都按时赶到火车站?为了赶火车, 6 时 55 分必
7、须到火车站。他们千米,显然全部路程都乘车,因需客车多次4 千米,那么应如何安排,才能使所有优秀学习资料欢迎下载赶到火车站,每人步行时间应该相同,乘车时间也相同。设每人步行x时,客车能否在115 分钟完成。解:把150人分三批,每批50人,步行速度为4千米/时,汽车速度为解得 x 1.5(时),即每人步行 90 分,乘车 25 分。三批人 5 时同时出发, 第一批人乘 25 分钟车到达 A 点,下车步行;客车从 A 立即返回,在 B 点遇上步行的第二批人,乘 25 分钟车,第二批人下车步行,客车再立即返回,又在 C 点遇到步行而来的第三批人,然后把他们直接送到火车站。如此安排第一、二批人按时到火
8、车站是没问题的,第三批人是否正巧可乘25 分钟车呢?必须计算。次返回的时间是20 分,同样可计算客车第二次返回的时间也应是20 分,所以当客车与第三批人相遇时,客车已用 25× 2 20× 2=90(分),还有 115-90=25 (分),正好可把第三批人按时送到。因此可以按上述方法安排。说明:列方程,解出需步行90 分、乘车25 分后,可以安排了,但验算不能省掉,因为这关系到第三批人是否可以按时到车站的问题。通过计算知第三批人正巧可乘车25 分,按时到达。但如果人数增加,或者车速减慢,虽然方程可以类似地列出,却不能保证人员都按时到达目的地。二、引入参数列方程解应用题对于数
9、量关系比较复杂或已知条件较少的应用题,列方程时,除了应设的未知数外,还需要增设一些“设而不求”的参数, 便于把用自然语言描述的数量关系翻译成代数语言,以便沟通数量关系,为列方程创造条件。例 7 某人在公路上行走,往返公共汽车每隔4 分就有一辆与此人迎面相遇,每隔6 分就有一辆从背后超过此人。如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?分析:此题看起来似乎不易找到相等关系,注意到某人在公路上行走与迎面开来的车相遇,是相遇问题,人与汽车4 分所行的路程之和恰是两辆相继同向行驶的公共汽车的距离;每隔6 分就有一辆车从背后超过此人是追及问题,车与人6 分所行的路程差恰是两车的距离,再引进速度
10、这一未知常量作参数,问题就解决了。解:设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由,得将代入,得优秀学习资料欢迎下载说明:此题引入v1, v2 两个未知量作参数,计算时这两个参数被消去,即问题的答案与参数的选择无关。本题的解法很多,可参考本丛书五年级数学活动课第26 讲。例 8 整片牧场上的草长得一样密,一样地快。已知70 头牛在 24 天里把草吃完,而30 头牛就得60 天。如果要在 96 天内把牧场的草吃完,那么有多少头牛?分析:本题中牧场原有草量是多少?每天能生长草量多少?每头牛一天吃草量多少?若这三个量用参数a,b, c 表示,再设所求牛的头数为x,则可列
11、出三个方程。若能消去a, b, c,便可解决问题。解:设整片牧场的原有草量为 a,每天生长的草量为 b,每头牛一天吃草量为 c,x 头牛在 96 天内能把牧场上的草吃完,则有 -,得36b=120C 。 -,得96xc=1800c 36b。 将代入,得96xc 1800c+120c。解得 x=20 。答:有 20 头牛。例 9 从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶20 千米,下坡时每小时行驶35千米。车从甲地开往乙从甲地到乙地须行驶多少千米的上坡路?解:从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路。设从甲地到
12、乙地的上坡路为x 千米,下坡路为y 千米,依题意得,得将 y=210 x 代入式,得解得 x 140。优秀学习资料欢迎下载答:甲、乙两地间的公路有210 千米,从甲地到乙地须行驶140 千米的上坡路。三、列不定方程解应用题有些应用题,用代数方程求解,有时会出现所设未知数的个数多于所列方程的个数,这种情况下的方程称为不定方程。这时方程的解有多个,即解不是唯一确定的。但注意到题目对解的要求,有时,只需要其中一些或个别解。例 10 六( 1)班举行一次数学测验,采用 5 级计分制( 5 分最高, 4 分次之,以此类推) 。男生的平均成绩为 4 分,女生的平均成绩为 3.25 分,而全班的平均成绩为
13、3.6 分。如果该班的人数多于 30 人,少于 50 人,那么有多少男生和多少女生参加了测验?解:设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6 ( x+y ),化简后得8x=7y 。从而全班共有学生在大于 30 小于 50 的自然数中,只有45 可被 15 整除,所以推知 x 21, y=24 。答:该班有 21 个男生和24 个女生。例 11小明玩套圈游戏,套中小鸡一次得9 分,套中小猴得5 分,套中小狗得 2 分。小明共套了10 次,每次都套中了,每个小玩具都至少被套中一次,小明套10 次共得 61 分。问:小明至多套中小鸡几次?解:设套中小鸡 x 次,套中小猴y 次,则
14、套中小狗( 10-x-y )次。根据得61 分可列方程9x+5y+2 ( 10-x-y ) =61,化简后得 7x=41 3y。显然 y 越小, x 越大。将 y=1 代入得 7x=38 ,无整数解;若y=2 ,7x=35 ,解得 x=5 。答:小明至多套中小鸡5 次。例 12某缝纫社有甲、乙、丙、丁4 个小组,甲组每天能缝制8 件上衣或10 条裤子;乙组每天能缝制9 件上衣或 12条裤子;丙组每天能缝制7 件上衣或11 条裤子;丁组每天能缝制6 件上衣或 7 条裤子。现在上衣和裤子要配套缝制(每套为一件上衣和一条裤子)。问: 7 天中这 4 个小组最多可缝制多少套衣服?分析:不能仅按生产上衣
15、或裤子的数量来安排生产,应该考虑各组生产上衣、裤子的效率高低,在配套下安排生产。我们首先要说明安排做上衣效率高的多做上衣,做裤子效率高的多做裤子,才能使所做衣服套数最多。一 般 情 况 , 设A组 每 天 能 缝 制a1件 上 衣 或b1条 裤 子 , 它 们 的 比 为在安排 A 组尽量多做上衣、B组尽量多做裤子的情况下,安排配套生产。这优秀学习资料欢迎下载的效率高,故这7 天全安排这两组生产单一产品。设甲组生产上衣 x 天,生产裤子( 7-x)天,乙组生产上衣 y 天,生产裤子( 7-y)天,则 4 个组分别共生产上衣、裤子各为 6× 7 8x+9y (件)和 11× 7 10( 7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课件制作步骤
- 幼儿园家长会安全知识宣传
- 联璧金融实习心得
- 清场管理培训
- 初中数学老师工作计划上学期怎么写
- 煤质化验员工作总结
- 防火消防知识安全主题教育
- 老师我想对你说初中作文600字5篇
- 建筑工程实习报告集锦15篇
- 妇产科实习护士工作总结
- 课题2 碳的氧化物(第1课时)教学课件九年级化学上册人教版2024
- 寒假假前安全教育课件
- 呼吸衰竭应急预案及处理流程
- 《偶像团体团内“CP”热现象的传播动因研究》
- ALC轻质隔墙板供应与安装分包项目协议
- 行长招聘笔试题与参考答案(某大型国企)2024年
- 正念减压疗法详解课件
- 国际贸易风险评估
- 中华护理学会40个团体标准学习考核(1-20项)复习试题及答案
- 统编版(2024)七年级上册道德与法治第三单元《珍爱我们的生命》学情调研测试卷(含答案)
- 国家级紧急医学救援队伍建设规范
评论
0/150
提交评论