九年级数学图形的旋转和中心对称_第1页
九年级数学图形的旋转和中心对称_第2页
九年级数学图形的旋转和中心对称_第3页
九年级数学图形的旋转和中心对称_第4页
九年级数学图形的旋转和中心对称_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二、空间与图形图形的旋转和中心对称目录中考目标中考目标1知识概要知识概要2基本练习基本练习3范例精析范例精析4一、中考目标图形的旋转通过具体实例认识旋转a探索旋转的基本性质、理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角度彼此相等的性质 c了解平行四边形、圆是中心对称图形a能作出简单平面图形旋转后的图形c探索图形之间的变换关系(轴对称、平移、旋转及其组合)c灵活运用轴对称、平移、旋转及其组合进行图案设计c认识旋转在现实生活中的应用c二、知识概要1.概念:旋转:如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.中心

2、对称图形:图形绕着中心旋转180后与自身重合称中心对称图形(如:平行四边形、圆等)。旋转中心旋转中心二、知识概要2.性质:旋转不改变图形的形状和大小(即旋转前后的两个图形全等).任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角).经过旋转,对应点到旋转中心的距离相等.3.旋转三要点:旋转中心,方向,角度.4.对称、平移、旋转及其组合灵活运用轴对称、中心对称、平移和旋转的组合进行图案设计.按要求作出简单平面图形变换后的图形.1.正八边形绕其中心至少要旋转_度才能与原来图形重合。2.在线段、锐角、等边三角形、正方形和圆中,是中心对称图形的有_。3.如图,abc与acd都是等边三角形,如果

3、abc经过旋转后能能与acd重合,则旋转中心和旋转角度分别是_。三、基本练习 填空题45a 和和 60线段、正方形和圆线段、正方形和圆abcd三、基本练习 选择题1.若两个图形关于某一点成中心对称,那么下列说法:对称点的连线必过对称中心;对称点的连线必过对称中心;这两个图形一定全等;这两个图形一定全等;对应线段一定平行且相等;对应线段一定平行且相等;将一个图形绕对称中心旋转将一个图形绕对称中心旋转180必定与另一个图必定与另一个图形重合。形重合。其中正确的是( )。(a) (b) (c) (d) 2.如图,如果正方形cdef旋转后能与正方形abcd重合,那么图形所在的平面上可以作为旋转中心的点

4、共有( )。(a) 4 (b) 3 (c) 2 (d) 1cbabcdef1.如图,abc是等边三角形。d是bc上一点,abd经过旋转后到达ace的位置。旋转中心是哪一点旋转中心是哪一点旋转了多少度?旋转了多少度?如果如果m是是ab的中点,那么经过上述旋转后,的中点,那么经过上述旋转后,点点m转到了什么位置?转到了什么位置?四、范例精析2.下图是某设计师设计的方桌边图案的一部分。请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90,180,270,并画出它在各象限内的图形。四、范例精析四、范例精析3.如图甲,正方形abcd和正方形cefg共一顶点c,且b,c,e在一条直线上。连接

5、bg,de.请你猜测请你猜测bg,de的位置关系和数量关系,的位置关系和数量关系,并说明理由;并说明理由;若正方形若正方形cefg绕绕c点顺时针方向旋转一个点顺时针方向旋转一个角度后,如图乙,角度后,如图乙,bg和和de是否还有上述是否还有上述关系?是说明理由。关系?是说明理由。四、范例精析4.一张餐桌如图,餐桌的中心已经放上一个圆形的火锅。一个游戏规则是:两人轮流沿桌面四周摆放同样大小的茶碗,每人每次摆放一个,茶碗不能互相重叠,谁先摆不下茶碗,就算谁输。你有没有必胜策略?四、范例精析5.在平面直角坐标系中,已知点p0的坐标为(1,0),将点p0绕着原点o按逆时针方向旋转30得到点p1,延长o

6、p1到点p2使o p2=2op1;再将点p2绕原点o按逆时针方向旋转30得到点p3,延长op3到点p4使o p4=2op3;如此继续下去。求:点点p2的坐标;的坐标;点点p2003的坐标的坐标.四、范例精析6.(1)操作与说明:如图,o是边长为a的正方形abcd的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在o点处,并将纸板绕o点旋转。则abcd的边被纸板覆盖部分的总长度为定值a.试说明理由;四、范例精析6.( 接上页)(2)尝试与思考:如图,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形的中心点o点处,并将纸板绕o点旋转,当扇形纸板的圆心角为_时,正三角形的边被纸板覆盖部分的总长为定值a;当扇形纸板的圆心角为_时,正五边形的边被纸板覆盖部分的总长也为定值a;四、范例精析6.( 接上页)(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形中心点o点处,并将纸板绕o点旋转,当扇

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论