版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、板块二.直线与双曲线1椭圆的定义:平面内与两个定点的距离之和等于常数(大于)的点的轨迹(或集合)叫做椭圆这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距2椭圆的标准方程:,焦点是,且,焦点是,且3椭圆的几何性质(用标准方程研究):范围:,;对称性:以轴、轴为对称轴,以坐标原点为对称中心,椭圆的对称中心又叫做椭圆的中心;椭圆的顶点:椭圆与它的对称轴的四个交点,如图中的;长轴与短轴:焦点所在的对称轴上,两个顶点间的线段称为椭圆的长轴,如图中线段的;另一对顶点间的线段叫做椭圆的短轴,如图中的线段椭圆的离心率:,焦距与长轴长之比,越趋近于,椭圆越扁;反之,越趋近于,椭圆越趋近于圆4直线:与圆锥曲线
2、:的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切这三种位置关系的判定条件可归纳为:设直线:,圆锥曲线:,由消去(或消去)得:若,相交;相离;相切若,得到一个一次方程:为双曲线,则与双曲线的渐近线平行;为抛物线,则与抛物线的对称轴平行因此直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件5连结圆锥曲线上两个点的线段称为圆锥曲线的弦求弦长的一种求法是将直线方程与圆锥曲线的方程联立,求出两交点的坐标,然后运用两点间的距离
3、公式来求;另外一种求法是如果直线的斜率为,被圆锥曲线截得弦两端点坐标分别为,则弦长公式为两根差公式:如果满足一元二次方程:,则()6直线与圆锥曲线问题的常用解题思路有:从方程的观点出发,利用根与系数的关系来进行讨论,这是用代数方法来解决几何问题的基础要重视通过设而不求与弦长公式简化计算,并同时注意在适当时利用图形的平面几何性质以向量为工具,利用向量的坐标运算解决与中点、弦长、角度相关的问题典例分析【例1】 若直线与双曲线的右支有两个不同的交点,则的取值范围是_【例2】 过双曲线的右焦点直线交双曲线于、两点,若,则这样的直线有_条 【例3】 过点与双曲线有且仅有一个公共点的直线的斜率的取值范围为
4、_【例4】 直线与双曲线相交于两点、,则=_【例5】 若直线与双曲线没有公共点,求的取值范围【例6】 若直线与双曲线有且只有一个公共点,求的的值【例7】 若直线与双曲线有两个相异公共点,求的取值范围【例8】 直线与双曲线的一支有两个相异公共点,求的取值范围【例9】 若直线与双曲线的两支各有一个公共点,求的取值范围【例10】 若直线与双曲线的右支有两个相异公共点,求的取值范围【例11】 已知不论取何实数,直线与双曲线总有公共点,求实数的取值范围【例12】 直线与双曲线交于、两点当为何值时,、分别在双曲线的两支上?当为何值时,以为直径的圆过坐标原点?【例13】 已知直线与双曲线相交于两个不同点、求
5、的取值范围;若轴上的点到、两点的距离相等,求的值【例14】 已知直线与双曲线,记双曲线的右顶点为,是否存在实数,使得直线与双曲线的右支交于两点,且,若存在,求出值:若不存在,请说明理由【例15】 已知点,动点满足条件,记动点的轨迹为求的方程;若、是曲线上不同的两点,是坐标原点,求的最小值【例16】 直线与双曲线的右支交不同的,两点,求实数取值范围;是否存在实数,使得以线段直径的圆经过双曲线的右焦点若存在,求出值:若不存在,请说明理由【例17】 双曲线的中心在原点,右焦点为,渐近线方程为求双曲线的方程;设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点【例18】 已知双曲线的中心在原
6、点,焦点在轴上,离心率为,过其右焦点且倾斜角为的直线被双曲线截得的弦的长为求此双曲线的方程;若直线与该双曲线交于两个不同点、,且以线段为直径的圆过原点,求定点到直线的距离的最大值,并求此时直线的方程_ / / / / / / / / / / / / / / / / 密 封 装 订 线 / / / / / / / / / / / / / / / / 密 封 线 内 不 要 答 题 【例19】 在中,已知、,动点满足求动点的轨迹方程;设点,过点作直线垂直,且与直线交于点,试在轴上确定一点,使得;在的条件下,设点关于轴的对称点为,求的值【例20】 已知中心在原点的双曲线的右焦点为,右顶点为求双曲线的
7、方程;若直线与双曲线恒有两个不同的交点和,且(其中为原点),求的取值范围【例21】 已知双曲线,设过点的直线的方向向量 当直线与双曲线的一条渐近线平行时,求直线的方程及与的距离;证明:当>时,在双曲线的右支上不存在点,使之到直线的距离为【例22】 已知双曲线的方程为,离心率,顶点到渐近线的距离为求双曲线的方程; 如图,是双曲线上一点,两点在双曲线的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围【例23】 已知以原点为中心,为右焦点的双曲线的离心率求双曲线c的标准方程及其渐近线方程;如图,已知过点的直线与过点(其中)的直线的交点在双曲线上,直线与两条渐近线分别交与、两点,求的面积【例24】 已知动圆过点并且与圆相外切,动圆圆心的轨迹为,轨迹与轴的交点为求轨迹的方程;设直线过点且与轨迹有两个不同的交点,求直线的斜率的取值范围;在的条件下,若,证明直线过定点,并求出这个定点的坐标【例25】 已知点为双曲线(为正常数)上任一点,为双曲线的右焦点,过 作右准线的垂线,垂足为,连接并延长交轴于 求线段的中点的轨迹的方程;设轨迹与轴交于、两点,在上任取一点,直线,分别交轴于两点求证:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版委托借款合同范本
- 2024年双方关于量子计算机技术研发合同
- 出租门面合同范本2024年
- 房地产项目联营开发合同样本
- 广告位合作合同模板
- 2024自建房购房合同协议书范本
- 2024报价合同格式范本质押合同格式范本2
- 2024生鲜品采购合同范本
- 2024购销合同范本(手机美容保护膜系统购销)范文
- 房产中介合同样本
- (完整版)病例演讲比赛PPT模板
- 直播合作协议
- 社科类课题申报工作辅导报告课件
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
- 精益工厂布局及精益物流规划课件
- 注射液无菌检查的方法学验证方案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题荟萃带答案
评论
0/150
提交评论