版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学基本公式手册第一章:集合与函数1.德摩根公式 .2.3.4.二次函数的解析式的三种形式 一般式; 顶点式 ;零点式.5.设那么上是增函数;上是减函数.设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.6.函数的图象的对称性:函数的图象关于直线对称.函数的图象关于直线对称.7.两个函数图象的对称性:函数与函数的图象关于直线(即轴)对称.函数与函数的图象关于直线对称.函数和的图象关于直线y=x对称.8.分数指数幂 (,且).(,且).9. .10.对数的换底公式 .推论 .1 / 15第二章:不等式第三章:数列11.( 数列的前n项的和为).12.等差数列的通项公式;其前n项和公
2、式 .13.等比数列的通项公式;其前n项的和公式或.14.等比差数列:的通项公式为;其前n项和公式为.15.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).第四章:三角16.同角三角函数的基本关系式 ,=,.17.正弦、余弦的诱导公式为偶数为奇数为偶数为奇数 18.和角与差角公式;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).积化和差公式(特别注意这里的大小关系)19.二倍角公式 . 降幂公式 20.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期. 通用周期公式:函数的周期21.正弦定理
3、0;.22.余弦定理; . 余弦定理另一表达形式:(通常用来求角) 23.面积定理(1)(分别表示a、b、c边上的高).(2).(3).24.三角形内角和定理 在ABC中,有.第五章:向量25.平面两点间的距离公式 =(A,B).26.向量的平行与垂直 设a=,b=,且b0,则abb=a .ab(a0)a·b=0(联想记忆直线平行与垂直的性质).27.线段的定比分公式 设,是线段的分点,是实数,且,则().特例:中点坐标公式28.三角形的重心坐标公式 ABC三个顶点的坐标分别为、,则ABC的重心的坐标是.29.点的平移公式 (图形F上的任意一点P(x,y)在平移后图形上的
4、对应点为,且的坐标为).第六章:不等式30.常用不等式:(1)(当且仅当ab时取“=”号)(2)(当且仅当ab时取“=”号)(3)(4)柯西不等式(5)31.极值定理 已知都是正数,则有(1)如果积是定值,那么当时和有最小值;(2)如果和是定值,那么当时积有最大值.32.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.;.33.含有绝对值的不等式 当a> 0时,有.或.34.无理不等式(1) .(2).(3).35.指数不等式与对数不等式 (1)当时,; .(2)当时,;第七章:解析几何36.斜率公式 (、).37.直线
5、的四种方程 (1)点斜式 (直线过点,且斜率为)(2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、 ().(4)一般式 (其中A、B不同时为0).38.两条直线的平行和垂直 (1)若,;.(2)若,且A1、A2、B1、B2都不为零,;39.夹角公式 .(,,)(,).直线时,直线l1与l2的夹角是.40.点到直线的距离 (点,直线:).直线补充:过2条直线l1,l2的直线系方程: 41. 圆的四种方程(1)圆的标准方程 .(2)圆的一般方程 (0).(3)圆的参数方程 .(4)圆的直径式方程 (圆的直径的端点是、).圆的补充知识:1、 相交弦方程:2、 圆的切线方程:见本页49项
6、42.椭圆的参数方程是.43.椭圆焦半径公式 ,.44.双曲线的焦半径公式,.45.抛物线上的动点可设为P或 P,其中 .46.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.47.直线与圆锥曲线相交的弦长公式 或(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). 48.圆锥曲线的两类对称问题:(1)曲线关于点成中心对称的曲线是.(2)曲线关于直线成轴对称的曲线是.49.切线方程快速解法: 对于一般的二次曲线,用代,用代,用代,用代,用代即得方程,这就是曲线的切线方程50.共线向量定理 对空间任意两个向量a、b(b0 ),ab存在实数使a=b51
7、.对空间任一点O和不共线的三点A、B、C,满足,则四点P、A、B、C是共面52. 空间两个向量的夹角公式 cosa,b=(a,b).53.直线与平面所成角(为平面的法向量). 54.二面角的平面角或(,为平面,的法向量).55.设AC是内的任一条直线,且BCAC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为则.56.若夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是,与二面角的棱所成的角是,则有 ;(当且仅当时等号成立).57.空间两点间的距离公式 若A,B,则 =.58.点到直线距离(点在直线上,直线的方向向量a=,向量b=).59.异面直线间的距
8、离 (是两异面直线,其公垂向量为,分别是上任一点,为间的距离).60.点到平面的距离 (为平面的法向量,是经过面的一条斜线,).61.异面直线上两点距离公式 (两条异面直线a、b所成的角为,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,).62. (长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为)(立几中长方体对角线长的公式是其特例).63. 面积射影(二面角)定理 (大型考试如高考时最好先加以证明)64常见几何体的体积公式: 第八章:排列组合与二项式定理:66.分类计数原理(加法原理).67.分步计数原理(乘法原理).68.排列数公式 =.(,N*,且)69.排列
9、恒等式 (1);(2);(3); (4);(5).70.组合数公式 =(,N*,且). 71.组合数的两个性质(1) = ;(2) += 72.组合恒等式(1);(2);(3); (4)=;(5).73.排列数与组合数的关系是: .74.二项式定理 ;二项展开式的通项公式:.式子中的系数:式子中常数项的系数:用比例法第九章:概率75.等可能性事件的概率.76.互斥事件A,B分别发生的概率的和P(AB)=P(A)P(B)77.个互斥事件分别发生的概率的和P(A1A2An)=P(A1)P(A2)P(An)78.独立事件A,B同时发生的概率P(A·B)= P(A)·P(B).79
10、.n个独立事件同时发生的概率 P(A1· A2·· An)=P(A1)· P(A2)·· P(An)80.n次独立重复试验中某事件恰好发生k次的概率81.离散型随机变量的分布列的两个性质:(1);(2).82.数学期望83.数学期望的性质:(1);(2)若,则.84.方差85.标准差=.86.方差的性质(1);(2);(3)若,则.87.正态分布密度函数式中的实数,(>0)是参数,分别表示个体的平均数与标准差.88.标准正态分布密度函数.89.对于,取值小于x的概率.90.回归直线方程 ,其中.91.相关系数 .|r|1,且|r
11、|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.第十章:极限92.特殊数列的极限 (1).(2).(3)(无穷等比数列 ()的和).93.这是函数极限存在的一个充要条件.94.函数的夹逼性定理 如果函数f(x),g(x),h(x)在点x0的附近满足:(1);(2)(常数),则.本定理对于单侧极限和的情况仍然成立.95.两个重要的极限 (1);(2)(e=2.718281845).96.在处的导数(或变化率或微商).97.瞬时速度.98.瞬时加速度.第十一章:导数99.在的导数.100.函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.101.几种常见函数的导数(1) (C为常数).(2) .(3) .(4) . (5) ;.(6) ; .102.复合函数的求导法则 设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.103.可导函数的微分.第十二章:复数104.()105.复数的模(或绝对值)=.106.复数的四则运算法则 (1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年焊材粉搬迁改造项目可行性研究报告
- 2024年度建筑工程grc材料安装指导合同
- 2024-2030年攻丝机搬迁改造项目可行性研究报告
- 2024年建筑项目技术合作合同
- 2024-2030年卡车和公共汽车后视镜行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024年度加油站点缀装修协议
- 2024年三烷基叔胺及其甲基氯化铵项目资金筹措计划书代可行性研究报告
- 2024-2030年全球及中国有机废弃物转换器行业发展前景及投资趋势预测报告
- 2024-2030年全球及中国拉伸热定型绕线机行业销售动态及供需前景预测报告
- 2024-2030年全球及中国分布式边缘云行业发展态势及前景趋势预测报告
- 护理核心制度督查表20179
- 红色古色绿色文化教育活动策划方案
- 《Monsters 怪兽》中英对照歌词
- 《正交分解法》导学案
- 建筑材料知识点汇总
- 平面构成作品欣赏
- 英语管道专业术语
- 浅谈语文课程内容的横向联系
- 社会工作毕业论文(优秀范文8篇)
- 五篇500字左右的短剧剧本
- 新形势下如何加强医院新闻宣传工作
评论
0/150
提交评论