版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知识回顾知识回顾: : 同学们, ,我们回顾一下学过的这些角: :第1页/共33页知识回顾知识回顾: :角的定义1: 平面内从一个点出发引出的两条射线构成的几何图形. 这种静态定义是从图形形状来定义角,因此角的范围是0, 360第2页/共33页同学们见过不在0360范围的角吗?我们来看一些实例。第3页/共33页同学们现实生活中确定有存在不在学过范围的角现状生活中:体操、跳水、滑冰、转体720度的高难度动作,直体后空翻转体900度及以上的旋转时钟的时针、分针转动和调准时间时顺时针、逆时针拨转角度主从动轮转动角车的轮子的转动角风车,风扇叶片等转动第4页/共33页定义2:平面内一条射线绕着端点从一个
2、位置旋转到另一个位置所成的图形.射线OA、OB分别是角的始边和终边,端点O为角的顶点。思考:这些旋转形成的角该如何表示和区分?引入新的角定义:第5页/共33页类比初中数的扩展学习,我们可以把这种运动形成的角推广到任意角。为了方便规定:按逆时针方向旋转所形成的角叫做正角按顺时针方向旋转所形成的角叫做负角没有作任何旋转形成的角叫做零角1.任意角:含任意大小的正角,负角,零角。OA(B)第6页/共33页在初中我们研究了锐角三角函数,为了研究任意角的三角函数,用角和长度定位点,实现几何问题代数化。我们常在直角坐标系内讨论角。把角的顶点重合于坐标原点,角的始边重合于x轴的正半轴。角的终边落在第几象限,就
3、说这个角是第几象限的角(包含第一、 二、三、 四象限角)角的终边落在哪坐标轴上,就说这个角是哪坐标轴上角(包含x,y正负半轴上的角) 第7页/共33页2象限角和坐标轴上角xyo始边终边是第一象限角 终边是是第第二二象象限限角角 终边终边是是第第三三象象限限角角 是是第第四四象象限限角角 第8页/共33页用旋转定义的任意角,需要注意三个要素:旋转中心、旋转方向和旋转量 (当旋转超过一周时,旋转量即超过360,角度的绝对值可大于360 。于是就有720 , 540,第一象限的角也已经超越原来锐角的范畴.)角第9页/共33页3终边相同的角 观察:330 ,750角,它们的终边与30角的终边有何关系?
4、探究:与30 终边相同的角(含30 角本身)集合用描述法如何表示?330=30+(1)360 (k=1) , 30=30+0360 (k=0), 750=30+2360(k=2) (3)结论:思考:从终边相同的角集合表示中可以悟出什么?与 终边相同的角(含 本身)集合用描述法又将如何表示?Zkk,360Zkk,36030第10页/共33页例1 1:写出终边落在y y轴上的角的集合。 解:终边落在解:终边落在轴轴正正半轴上的角的集合为半轴上的角的集合为S1=| =900+K3600,KZ =| =900+2K1800,KZ=| =900+1800 的偶数倍终边落在轴负半轴上的角的集合为S2=|
5、=2700+K3600,KZ=| =900+1800+2K1800,KZ=| =900+(2K+1)1800 ,KZ=| =900+1800 的奇数倍NoImage第11页/共33页S=S1S2所以终边落在轴上的角的集合为=| =900+1800 的偶数倍| =900+1800 的奇数倍=| =900+1800 的整数倍=| =900+K1800 ,KZ第12页/共33页 根据角的动态定义:角是由射线绕它的端点旋转而成的,在旋转的过程中射线上的点必然形成一条圆弧。 思考:不同的点所形成的圆弧的长度是不同的,但都对应同一个圆心角,探索弧长与其半径之比有什么关系? 1 的角是周角的 用1角作单位来
6、度量角的制度叫做角度制但角的度量单位如同长度,面积,体积等有不同单位一样,也由于数据大,书写不便等有引入不同单位的需要。13 6 0第13页/共33页设=n,AB弧长为l,半径OA为r,则可以看出,等式右端不含半径,表示弧长与半径的比值跟半径无关,只与的大小有关。 22,360360rllnnr3弧度rr对于同一圆心角,BAAB第14页/共33页3弧度 弧长等于半径长(l=r)的圆弧所对的圆心角叫做1弧度的角,弧度记作rad.角 的弧度数的绝对值规定等于 . 的正负由 的终边的旋转方向决定。 这种以弧度为单位来度量角的制度叫做弧度制。rlrl 360= , 180= rad,)(22radrr
7、rl 1=rad0.01745rad1801 8 05 7 .3 05 7 1 8 1 rad注:rad今后可以省略不写第15页/共33页 用弧度来度量角,实际上角的集合与实数集R之间建立一一对应的关系:弧度的集合(实数集R)角的集合正角零角负角正实数零负实数第16页/共33页请运用转换公式,填写下表:度度0-3045 度弧度4243360301366523326090-1502700第17页/共33页3弧度 r弧长22121rrS扇形1802360rnrn弧长236021rnrS扇形对比记忆:初中弧长和面积公式:思考:扇形的弧长和面积共含几个变量,已知几个量,才能求
8、出另外的量呢?rl第18页/共33页例2. 已知一半径为R的扇形,它的周长等于所在圆的周长,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少? 解:周长=2R=2R+l,所以l=2(1)R.所以扇形的中心角是2(1) rad.合 度360(1)扇形面积是2(1)R第19页/共33页合作探究练习1 1:用角度和弧度分别表示: :1. 终边在x轴上的角的集合2. 终边在坐标轴上的角的集合3. 终边在第一象限角的集合4. 终边在y=x直线上的角的集合2.| =k1800 ,kZ| =k ,kZ.| =k900 ,kZ| =k ,kZ3.| k 3600 k 3600+900 ,kZ| 2k 2
9、k + ,kZ4.| =k 1800+450 ,kZ| =k + ,kZ24思考:终边在过直角坐标系原点的直线上角的集合共同特征是怎样的?第20页/共33页合作探究练习2.在0到360度(02)范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角?(1)-120(2) (3) -950 12(4)所以与-120 角终边相同的角是240 角,它是第三象限角。 所以与 角终边相同的角是 ,它是第四象限角。 所以与-95012 角终边相同的角是12948 角,它是第二象限角。 (2)因为 解(1)因这-120=-1360 +240 (3)因为-95012 = -3360+12948311623
10、3523113113564623(4)因为6236所以与 角终边相同的角是 , 它是第一象限角。第21页/共33页小结:1.在0到360度(02)内找与已知角终边相同的角,方法是:用所给角除以3600(2)所给角是正的:按通常的除法进行;所给角是负的:度数除以3600(2),商是负数,它的绝对值应比被除数为其相反数时相应的商大1,以便使余数为正值。2.判断一个角是第几象限角,方法是:把所给角 改写成 : 0+k 3600 ( KZ,00 03600) 的形式, 0在第几象限, 就是第几象限角。0 +k2 ( KZ, 0 02 ) 第22页/共33页合作探究练习3:(1)在半径为R的圆中,240
11、的中心角所对的弧长为 ,面积为2R 2的扇形的中心角等于 弧度。(2)一手表现发现走慢十五分钟需调正,分针要转多少弧度?解:(1)240= ,根据l=R,得4343lRrad290(2)需顺时针转90度,即为 根据S= lR= R2,且S=2R2.2121所以 =4.第23页/共33页课堂小结: 1.1.任意角:角的不同分类:正角、负角和零角 象限角和坐标轴上的角终边相同的角集合表示: : 2.2.角度制和弧度制的转化:Zkk,360 1=18057.3057 18 1 radrad0.01745rad1803.扇形的弧长和面积公式.(角度和弧度制)第24页/共33页作业课后作业: 见本节校本
12、作业一张第25页/共33页谢谢同学们配合!欢迎各位专家和老师提出宝贵意见!第26页/共33页在直角坐标系中任取象限的一个角 ,其 和角所在象限怎样变化?212第27页/共33页已知,角的终边相同,那么的终边在( ) A x轴的非负半轴上 B y轴的非负半轴上 C x轴的非正半轴上 D y轴的非正半轴上A第28页/共33页在直角坐标系中,若与终边互相垂直,那么与之间的关系是( ) A. =+90o B =90o C =k360o+90o+,kZ D =k360o90o+, kZD第29页/共33页若是第四象限角,则180是( ) A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角C第30页/共33页1)已知扇形的周长为10cm,面积为4cm,求扇形的圆心角的弧度数。(2)已知一扇形的周长为40cm,当它的半径和圆心角取什么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传输设备安全操作规程
- 2024民间借贷合同范文
- 宠物食品生产合作协议
- 共聚焦激光扫描显微镜安全操作规程
- 二零二五年度不动产交易抵押借款合同3篇
- 二零二五年度关联公司农业产业化借款合同模板
- 全自动炸薄脆油炸机安全操作规程
- 大数据在智慧城市中的应用与发展研究报告
- 二零二五年度企业员工加班费计算协议范本3篇
- 养殖基地污水设备安全操作规程
- 上海市徐汇区上海小学二年级上册语文期末考试试卷及答案
- 精密制造行业研究分析
- 心源性晕厥护理查房课件
- 2022-2023学年浙江省杭州市萧山区五年级(上)期末科学试卷(苏教版)
- 船舶辅机:喷射泵
- 岩土工程勘察服务投标方案(技术方案)
- 疼痛护理课件
- 副院长兼总工程师的岗位说明书
- 农民专业合作社章程参考
- 财务会计制度及核算软件备案报告书
- 肌骨超声简介
评论
0/150
提交评论