聚焦中考数学考点聚焦特殊三角形.PPT_第1页
聚焦中考数学考点聚焦特殊三角形.PPT_第2页
聚焦中考数学考点聚焦特殊三角形.PPT_第3页
聚焦中考数学考点聚焦特殊三角形.PPT_第4页
聚焦中考数学考点聚焦特殊三角形.PPT_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等腰(边)三角形、直角三角形的性质及判定性质判定等腰三角形(1)两腰相等,两底角相等;(2)顶角的平分线,底边上的中线,底边上的高互相重合;(3)是轴对称图形,有一条对称轴(1)有两条边相等的三角形是等腰三角形;(2)有两个角相等的三角形是等腰三角形等边三角形(1)三边相等;(2)各角相等,且都等于60;(3)是轴对称图形,有三条对称轴(1)三条边相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角等于60的_是等边三角形直角三角形(1)两锐角之和等于90;(2)斜边上的中线等于斜边的_;(3)30角所对的直角边等于斜边的一半;(4)若有一条直角边等于斜边的一半,那

2、么这条直角边所对的锐角等于_;(5)两直角边的平方和等于斜边的平方(1)有一个角为90的三角形是直角三角形;(2)一边上的中线等于这条边的一半的三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形等腰三角形一半301计算有关线段长问题,如果所求线段是在直角三角形中,一般应用勾股定理求解,即直角三角形斜边的平方等于两直角边的平方之和2有关等腰三角形的问题,若条件中没有明确底和腰时,一般应从某一边是底还是腰这两个方面进行讨论,还要特别注意构成三角形的条件;同时,在底角没有被指定的等腰三角形中,应就某角是顶角还是底角进行讨论注意运用分类讨论的方法,将问题考虑全

3、面,不能想当然3面积法:用面积法证题是常用的技巧方法之一,使用这种方法时一般是利用某个图形的多种面积求法或面积之间的和差关系列出等式,从而得到要证明的结论1(2014盘锦)如图,abc中,abac6,点m在bc上,meac,交ab于点e,mfab,交ac于点f,则四边形meaf的周长是()a6 b8 c10 d12d2(2014丹东)如图,在abc中,abac,a40,ab的垂直平分线交ab于点d,交ac于点e,连接be,则cbe的度数为()a70 b80 c40 d30dd 4(2015辽阳)如图,在abc中,bdac于d,点e为ab的中点,ad6,de5,则线段bd的长等于_5(2014鞍

4、山)如图,h是abc的边bc的中点,ag平分bac,点d是ac上一点,且agbd于点g,已知ab12,bc15,gh5,则abc的周长为_.8496(2014辽阳)如图,abc中,ad是中线,ae是角平分线,cfae于f,ab5,ac3,则df的长为_12 8(2013沈阳)已知等边三角形abc的高为4,在这个三角形所在的平面内有一点p,若点p到ab的距离是1,点p到ac的距离是2,则点p到bc的最小距离和最大距离分别是_1,79(2014锦州)如图,在abc中,点d在ab上,且cdcb,点e为bd的中点,点f为ac的中点,连接ef交cd于点m,连接am.(1)求证:efac.(2)若bac4

5、5,求线段am,dm,bc之间的数量关系等腰三角形有关边角的讨论 【例1】(1)(2015荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()a8或10 b8c10 d6或12(2)(葫芦岛模拟)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x212xk0的两个根,则k的值是()a27 b36 c27或36 d18解析:分两种情况:当其他两条边中有一个为3时,将x3代入原方程,得32123k0,k27,将k27代入原方程,得x212x270,解得x3或9.3,3,9不能够组成三角形;当3为底时,则其他两条边相等,即0,此时1444k0,k36.将k36

6、代入原方程,得x212x360,解得x6,3,6,6能够组成三角形,故答案为bcb【点评】在等腰三角形中,如果没有明确底边和腰,某一边可以是底,也可以是腰同样,某一角可以是底角也可以是顶角,必须仔细分类讨论对应训练1(1)(2015南宁)如图,在abc中,abaddc,b70,则c的度数为() aa35b40c45d50(2)(朝阳模拟)等腰三角形的一个外角是60,则它的顶角的度数是_120等腰三角形的性质 【例2】(2015北京)如图,在abc中,abac,ad是bc边上的中线,beac于点e.求证:cbebad.证明:abac,ad是bc边上的中线,adbc,ad平分bac,beac,cb

7、eccadc90,又cadbad,cbebad【点评】等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合对应训练2(2014菏泽)如图,在abc中,ad平分bac,bdad,垂足为点d,过点d作deac,交ab于点e,若ab5,求线段de的长解:ad平分bac,badcad,deac,cadade,badade,aede,addb,adb90,eadabd90,adebdeadb90,abdbde,debe,ab5,debeae2.5等边三角形 【例3】如图,在等边abc中,abc与acb的平分线相交于点o,且odab,oeac.(1)试判定ode的形状,并说明你的理由;(2)线段bd,

8、de,ec三者有什么关系?写出你的判断过程解:(1)ode是等边三角形,理由:abc是等边三角形,abcacb60,odab,oeac,odeabc60,oedacb60ode是等边三角形(2)bddeec,理由:ob平分abc,且abc60,aboobd30,odab,bodabo30,dbodob,dbdo,同理,eceo,deodoe,bddeec【点评】此题主要考查等边三角形的判定及性质的理解及运用对应训练3(1)(沈阳模拟)如图,将等边abc绕顶点a顺时针方向旋转,使边ab与ac重合得acd,bc的中点e的对应点为f,则eaf的度数是_ 60(2)(大连模拟)如图,点d在等边三角形a

9、bc的边ab上,点f在边ac上,连接df并延长交bc的延长线于点e,effd.求证:adce.直角三角形、勾股定理 【例4】(1)(本溪模拟)如图,公路ac,bc互相垂直,公路ab的中点m与点c被湖隔开若测得am的长为1.2 km,则m,c两点间的距离为()a0.5 km b0.6 km c0.9 km d1.2 km(2)(2015桂林)下列各组线段能构成直角三角形的一组是()a30,40,50 b7,12,13 c5,9,12 d3,4,6【点评】(1)在直角三角形中,斜边上的中线等于斜边的一半理解题意,将实际问题转化为数学问题是解题的关键(2)在应用勾股定理的逆定理时,应先认真分析所给边

10、的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断da对应训练4(1)(抚顺模拟)在abc中,ab13 cm,ac20 cm,bc边上的高为12 cm,则abc的面积为_cm2.(2)(2015苏州)如图,四边形abcd为矩形,过点d作对角线bd的垂线,交bc的延长线于点e,取be的中点f,连接df,df4.设abx,ady,则x2(y4)2的值为_ 126或66166.从不同的视角来证明几何命题 试题(2015营口)【问题探究】(1)如图,锐角abc中分别以ab,ac为边向外作等腰abe和等腰acd,使aeab,adac,baecad,连接bd,ce,试

11、猜想bd与ce的大小关系,并说明理由【深入探究】(2)如图,四边形abcd中,ab7 cm,bc3 cm,abcacdadc45,求bd的长审题视角(1)首先根据等式的性质证明eacbad,则根据sas即可证明eac bad,根据全等三角形的性质即可证明;(2)在abc的外部,以a为直角顶点作等腰直角bae,使bae90,aeab,连接ea,eb,ec,证明eac bad,证明bdce,然后在直角三角形bce中利用勾股定理即可求解答题思路第一步:通读问题,根据问题选择合理的几何分析方法;第二步:(1)综合法(由因导果):从命题的题设出发,通过一系列的有关定理、公理、定义的运用,逐步向前推进,直

12、到问题的解决;(2)分析法(执果索因),从命题的结论考虑,推敲使其成立需必备的条件,然后再把条件看成要证的结论继续推敲,如此逐步向上逆推,直到已知的条件为止;(3)两类结合法,将分析法与综合法合并使用比较起来,分析法利于思考,综合法宜于表达因此,在实际思考问题时,可综合使用,灵活处理,以缩短题设与结论之间的距离,直到完全沟通;第三步:视问题需要,添加合理的辅助线,把已知与未知集中在一起;第四步:从已知出发,一步一步作推理,使得问题得以证明;第五步:反思回顾,查看关键点、易错点,完善解题步骤19.三角形的高可能在形外三角形的高可能在形外 试题1在abc中,高ad和高be相交于h,且bhac,求abc的度数错解解:如图,在rtbhd和rtacd中,ccad90,chbd90,hbdcad.又bhac,bhd acd,bdad.adb90,abc45.剖析当abc是锐角三角形时,高ad和高be的交点h在三角形内;当abc是为钝角三角形时,高ad和高be的交点h在三角形外在解与高有关的问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论