下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、分类讨论思想方法在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。引起分类讨论的原因主要是以下几个方面: 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a0、a0、a1、0a2时分a0、a0和a0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结
2、论等,都主要通过分类讨论,保证其完整性,使之具有确定性。进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。、再现性题组:1集合Ax|x|4,xR,Bx|x3|a,xR,若AB,那么a的范围是_。A. 0a1 B. a1 C. a1 D. 0a0且
3、a1,plog(aa1),qlog(aa1),则p、q的大小关系是_。A. pq B. pq D.当a1时,pq;当0a1时,p0、a0、a1、0a1两种情况讨论,选C;3小题:分、0、0、x0两种情况,选B;、示范性题组:例1. 设0x0且a1,比较|log(1x)|与|log(1x)|的大小。1 / 5【分析】 比较对数大小,运用对数函数的单调性,而单调性与底数a有关,所以对底数a分两类情况进行讨论。【解】 0x1 01x1 当0a0,log(1x)0; 当a1时,log(1x)0,所以|log(1x)|log(1x)|log(1x) log(1x)log(1x)0;由、可知,|log(1
4、x)|log(1x)|。【注】本题要求对对数函数ylogx的单调性的两种情况十分熟悉,即当a1时其是增函数,当0a1时其是减函数。去绝对值时要判别符号,用到了函数的单调性;最后差值的符号判断,也用到函数的单调性。例2. 设函数f(x)ax2x2,对于满足1x0,求实数a的取值范围。 1 4 x 1 4 x【分析】 含参数的一元二次函数在有界区间上的最大值、最小值等值域问题,需要先对开口方向讨论,再对其抛物线对称轴的位置与闭区间的关系进行分类讨论,最后综合得解。【解】当a0时,f(x)a(x)2 或或 a1或a;当a 。【注】本题分两级讨论,先对决定开口方向的二次项系数a分a0、a0时将对称轴与
5、闭区间的关系分三种,即在闭区间左边、右边、中间。本题的解答,关键是分析符合条件的二次函数的图像,也可以看成是“数形结合法”的运用。例3. 解不等式0 (a为常数,a)【分析】 含参数的不等式,参数a决定了2a1的符号和两根4a、6a的大小,故对参数a分四种情况a0、a0、a0、a0时,a; 4a0 。 所以分以下四种情况讨论:当a0时,(x4a)(x6a)0,解得:x6a;当a0时,x0,解得:x0;当a0,解得: x4a;当a时,(x4a)(x6a)0,解得: 6ax0时,x6a;当a0时,x0;当a0时,x4a;当a时,6ax4a 。【注】 本题的关键是确定对参数a分四种情况进行讨论,做到不重不漏。一般地,遇到题目中含有参数的问题,常常结合参数的意义及对结果的影响而进行分类讨论,此种题型为含参型。、巩固性题组:1. 若loglog(xa) (a0且a1)7. 函数f(x)(|m|1)x2(m1)x1的图像与x轴只有一个公共点,求参数m的值及交点坐标。8.已知是实数,函数如果函数在区间上有零点,求的取值范围(07- 广东)1.C 对a分a1、0a1、0a1两种情况讨论.答案略。思路分析:首先先讨论这个函数到底是一次函数还是二次函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宾馆安装监控合同范例
- 药店聘用就业合同范例
- 培训跟人合作合同范例
- 中国日用橡胶制品胶垫项目投资可行性研究报告
- 2024年模拟数显仪表项目可行性研究报告
- 背带式旅行杯行业深度研究报告
- 2024至2030年采血笔项目投资价值分析报告
- 全球化背景下的科技产业发展趋势
- 富士康管理制度分析
- 2024至2030年卡式收录机项目投资价值分析报告
- 游戏综合YY频道设计模板
- 2023-2024学年天津市部分地区六年级数学第一学期期末综合测试试题含答案
- 2023年阻碍中国芯片产业发展的主要因素分析
- 城市亮化高空作业及安全措施施工方案
- 实验心理学文献阅读报告
- Rexroth (博世力士乐)VFC 3610系列变频器使用说明书
- 黑龙江龙江森工集团招聘笔试题
- 大班美术教案:拉手小人教案及教学反思
- 外墙外保温监理实施细则
- 剪映使用课件s
- 《Python Web 企业级项目开发教程(Django 版)》课后答案
评论
0/150
提交评论