版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、板块一.三角函数的基本概念典例分析题型一:任意角与弧度制【例1】 下列各对角中终边相同的角是( )。a 和 b 和 c 和 d 和【例2】 若角、的终边相同,则的终边在.a.轴的非负半轴上b.轴的非负半轴上c.轴的非正半轴上d.轴的非正半轴上【例3】 当角与的终边互为反向延长线,则的终边在.a.轴的非负半轴上b.轴的非负半轴上c.轴的非正半轴上d.轴的非正半轴上【例4】 时钟经过一小时,时针转过了( )。a b c d 【例5】 两个圆心角相同的扇形的面积之比为,则两个扇形周长的比为( )a b c d 【例6】 下列命题中正确的命题是( )a 若两扇形面积的比是,则两扇形弧长的比是b 若扇形
2、的弧长一定,则面积存在最大值c 若扇形的面积一定,则弧长存在最小 d 任意角的集合可以与实数集之间建立一种一一对应关系【例7】 一个半径为的扇形,它的周长是,则这个扇形所含弓形的面积是( )a. b c d 【例8】 下列说法正确的有几个( )(1)锐角是第一象限的角;(2)第一象限的角都是锐角;(3)小于的角是锐角;(4)的角是锐角。a 1个 b 2个 c 3个 d 4个【例9】 已知角的顶点与坐标系原点重合,始边落在轴的正半轴上,则角是第( )象限角。a 第一象限角 b 第二象限角 c 第三象限角 d 第四象限角【例10】 下面四个命题中正确的是( )a.第一象限的角必是锐角b.锐角必是第
3、一象限的角c.终边相同的角必相等d.第二象限的角必大于第一象限的角【例11】 已知角的终边经过点,则与终边相同的角的集合是.a.b.c.d.【例12】 若是第四象限角,则是( )a 第一象限角 b 第二象限角c 第三象限角 d 第四象限角【例13】 若与的终边互为反向延长线,则有( )a b c d 【例14】 与终边相同的最小正角为_,与终边相同的最小正角是_。【例15】 终边在坐标轴上的角的集合.【例16】 若和的终边关于y轴对称,则和的关系是.【例17】 若角和的终边关于轴对称,则角和之间的关系为.若角与的终边关于轴对称,则角和之间的关系为.【例18】 在,找出与下列各角终边相同的角,并
4、判断它是哪个象限:(1);(2)。【例19】 写出终边在轴上的角的集合(用到的角表示)。【例20】 若,则_(其中扇形的圆心角为,弧长为,半径为)。【例21】 钟表经过4小时,时针与分针各转了_(填度)。【例22】 如果角与角具有同一条终边,角与角具有同一条终边,那么与的关系是什么?【例23】 已知角是第二象限角,求所在的象限。【例24】 已知集合,则.a.b.c.d.【例25】 若;,则下列关系中正确的是( )a b c d 【例26】 圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为_。【例27】 用弧度制表示:终边在轴上的角的集合终边在轴上的角的集合终边在坐标轴上的角的集合。【
5、例28】 已知扇形周长为,面积为,求扇形中心角的弧度数。【例29】 视力正常的人,能读远处文字的视角不小于,试求:(1)距人远处所能阅读文字的大小如何?(2)要看清长,宽均为的大字标语,人距离标语的最远距离是多少米?【例30】 已知扇形的面积为,当扇形的圆心角为多少弧度时,扇形的周长最小?并求出此最小值。【例31】 (1)把化成弧度制; (2)把化成角度制。【例32】 求值:(1) (2)。【例33】 已知扇形的面积是,它的周长是,则弦的长等于多少?【例34】 将下列各角表示为的形式,并判断角在第几象限。(1); (2)。【例35】 写出与下列各角终边相同的角的集合,并把集合中适合不等式的元素
6、写出来。(1) (2)。【例36】 写出角的终边在图中阴影区域内的角的集合(不包括边界)。 图(1) 图(2)【例37】 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象限角:;.分别写出与下列各角终边相同的角的集合,写出中满足不等式的元素:;.【例38】 把化成弧度;把化成度.【例39】 把化成弧度;把化成度.【例40】 将下列各角化为的形式,并判断其所在象限.(1);(2)-315;(3)-1485.【例41】 把下列各角写成的形式,并指出它们所在的象限或终边位置.;.【例42】 写出终边在轴上的角的集合.【例43】 将第一象限角,第二象限角,第三象限角,第四象限角分别用弧度制的
7、形式表示.【例44】 有人喜欢把表播快5分钟,那么在拨快5分钟的过程中,分针和时针分别转过的弧度数是多少?【例45】 已知是第二象限的角,若同时满足条件,求的取值区间.【例46】 若是第二象限角,则:是第几象限角?不在第几象限?【例47】 已知扇形的周长为,面积为,求扇形的圆心角和弧度数.已知扇形的周长为,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?【例48】 若1段圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数是多少?题型二:任意角的三角函数【例49】 已知角的终边经过点,求角的正弦、余弦和正切值。【例50】 (1)已知角,求的值;(2)已知角的终边经过点
8、,求的值。【例51】 求函数的值域。【例52】 已知,求和的值。【例53】 已知,求及的值。【例54】 已知方程的两根分别是,求的值。【例55】 设角是第一象限角,且,则( )。a 第一象限角b 第二象限角 c 第三象限角d 第四象限角【例56】 若三角形的两内角满足,则此三角形必为( )。a 锐角三角形b 钝角三角形 c 直角三角形d 以上三种情况都可能【例57】 若是第二象限角,为其终边上一点,且,则的值为( ) a b c d 【例58】 若是第三象限角,则下列各式中不成立的是( )a b c d 【例59】 设,则的值为( )a b c d【例60】 已知角的终边经过,且,则的取值范围
9、是_。【例61】 _;_;_。【例62】 确定下列各式的符号。(1); (2)。【例63】 已知角的终边上一点的坐标是,且,求和的值。【例64】 已知,则为第几象限角?【例65】 已知,是第二象限角,那么的值等于( )。a b c d 【例66】 已知,且,则的值为( )。a b c d 【例67】 已知,求的值( ) a 2 b 3 c 1 d 【例68】 已知是三角形的内角,则的值为( ) a b c d 【例69】 已知是第三象限角,化简。【例70】 已知是第二象限角,化简为( ) a b c d【例71】 化简_; _。【例72】 已知,则_。【例73】 已知:且,试求,的值。【例74
10、】 已知,求下列各式的值:(1);(2);(3);(4)。【例75】 设且,确定是第几象限角.【例76】 若角满足条件,则在第几象限?【例77】 已知角的终边经过点,求的六个函数值.求下列各角的六个三角函数值:;.【例78】 已知,并且是第二象限角,求.已知,求.化简:【例79】 已知角的终边经过点p,问是第几象限的角,并求出的六个三角函数值.【例80】 已知角的终边上的一点的坐标为,且,求和值.【例81】 已知,求下列各式的值.;.【例82】 已知,计算:;.【例83】 求函数的定义域【例84】 求函数的定义域.【例85】 求函数的最小值.【例86】 若,则()a.b.c.d.【例87】 设的值.【例88】 已知为锐角,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2012年高考语文试卷(安徽)(空白卷)
- 《离子浓度大小比较》课件
- 挑战与突破自我
- 探索物理定律的奥秘
- 《痛苦的职场人》课件
- 工作调研报告(合集三篇)
- 2023年项目部安全管理人员安全培训考试题附参考答案(达标题)
- 2023年项目部安全管理人员安全培训考试题(1套)
- 母亲节新媒体策划
- 初中语文教师教学工作总结11篇
- 四川省2023年普通高中学业水平考试物理试卷 含解析
- 2024-2025学年人教版八年级上学期数学期末复习试题(含答案)
- 2024年医院康复科年度工作总结(4篇)
- 五金耗材材料项目投标方案(技术方案)
- 防网络电信诈骗主题班会
- 中职无人机应用技术跨行业人才培养方案
- 2024年执业药师继续教育专业答案
- 高级管理招聘面试题与参考回答2024年
- 国际合作项目风险管理
- 临床5A护理模式
- 第一单元《认识物联网》第1课 互联网和物联网 教案 2023-2024学年浙教版(2023)初中信息技术七年级下册
评论
0/150
提交评论