概率的基本性质公开课人教A必修PPT学习教案_第1页
概率的基本性质公开课人教A必修PPT学习教案_第2页
概率的基本性质公开课人教A必修PPT学习教案_第3页
概率的基本性质公开课人教A必修PPT学习教案_第4页
概率的基本性质公开课人教A必修PPT学习教案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1概率的基本性质公开课人教概率的基本性质公开课人教A必修必修 2.事件事件A的概率:的概率:对于给定的随机事件对于给定的随机事件A,如果随着试验次数的增加,如果随着试验次数的增加,事件事件A发生的频率发生的频率fn(A)稳定在某个常数上,把这个常稳定在某个常数上,把这个常数记作数记作P(A),称为事件,称为事件A的概率,简称为的概率,简称为A的概率。的概率。3.概率的范围:概率的范围: 10AP必然事件:在条件必然事件:在条件S S下下, ,一定会发生的事件一定会发生的事件, ,叫做必然事叫做必然事件件. .1. 必然事件、不可能事件、随机事件:必然事件、不可能事件、随机事件:不可能事件

2、:在条件不可能事件:在条件S S下下, ,一定不会发生的事件一定不会发生的事件, ,叫做不叫做不可能事件可能事件. . 随机事件:在条件随机事件:在条件S S下可能发生也可能不发生的事件下可能发生也可能不发生的事件, ,叫叫做随机事件做随机事件. .知识回顾知识回顾:第1页/共19页判断下列事件是判断下列事件是必然事件,随机事必然事件,随机事件,还是不可能事件?件,还是不可能事件?1 1、明天天晴、明天天晴. .2 2、实数的绝对值不小于、实数的绝对值不小于0.0.3 3、在常温下,铁熔化、在常温下,铁熔化. .4 4、从标有、从标有1 1、2 2、3 3、4 4的的4 4张号签中任取一张号签

3、中任取一张,得到张,得到4 4号签号签. .5 5、锐角三角形中两个内角的和是、锐角三角形中两个内角的和是90900 0. .想一想想一想必然事件必然事件随机事件随机事件不可能事件不可能事件随机事件随机事件不可能事件不可能事件练习练习:第2页/共19页思考思考: :在掷骰子试验中在掷骰子试验中, ,可以定义许多事件,例如可以定义许多事件,例如: :C C1 1=出现出现1 1点点; C C2 2=出现出现2 2点点; C C3 3=出现出现3 3点点;C C4 4=出现出现4 4点点; C C5 5=出现出现5 5点点;C C6 6=出现出现6 6点点;D D1 1=出现的点数不大于出现的点数

4、不大于1;1;D D2 2=出现的点数大于出现的点数大于3;3;D D3 3=出现的点数小于出现的点数小于5;5;E=E=出现的点数小于出现的点数小于7;7;F=F=出现的点数大于出现的点数大于6;6;G=G=出现的点数为偶数出现的点数为偶数; H=H=出现的点数为奇数出现的点数为奇数;类比集合与集合的关系、运算,你能发现事类比集合与集合的关系、运算,你能发现事件之间的关系与运算吗?件之间的关系与运算吗?第3页/共19页( (一)、事件的关系与运算一)、事件的关系与运算对于事件对于事件A A与事件与事件B B,如果事件,如果事件A A发生,则事件发生,则事件B B一一定发生,这时称事件定发生,

5、这时称事件B B包含事件包含事件A A(或称事件(或称事件A A包含包含于事件于事件B B).1.1.包含关系包含关系 AB注注: :(1 1)图形表示:)图形表示:(2 2)不可能事件记作)不可能事件记作 ,任何事件都包含任何事件都包含不可能事件不可能事件。如。如: : C C1 1 记作记作:B:B A A(或(或A A B B) D D3 3=出现的点数小于出现的点数小于5;5;例例: : C C1 1=出现出现1 1点点;如如:D:D3 3 C C1 1 或或 C C1 1 D D3 3第4页/共19页一般地,若一般地,若B B A A,且,且A A B B ,那么称事件,那么称事件A

6、 A与与事事件件B B相等。相等。 (2 2)两个相等的事件总是同时发生或同时)两个相等的事件总是同时发生或同时不发生。不发生。B(A)2.2.相等事件相等事件记作记作:A=B.:A=B.注:注:(1 1)图形表示:)图形表示:例例: C: C1 1=出现出现1 1点点; D D1 1=出现的点数不大于出现的点数不大于1;1;如如: C: C1 1=D=D1 1第5页/共19页3.3.并(和)事件并(和)事件若某事件发生当且仅当事件若某事件发生当且仅当事件A A或或事件事件B B发生,则称发生,则称此事件为事件此事件为事件A A与事件与事件B B的并事件(或和事件)的并事件(或和事件). .记

7、作:记作:A A B B(或(或A+BA+B)AB图形表示:图形表示:例例: C: C1 1=出现出现1 1点点;C C5 5=出现出现5 5点点;J=J=出现出现1 1点或点或5 5点点.如如:C:C1 1 C C5 5=J=J第6页/共19页第7页/共19页4.4.交(积)事件交(积)事件若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生发生且且事件事件B B发发生,则称此事件为事件生,则称此事件为事件A A与事件与事件B B的交事件(的交事件(或积事件)或积事件). .记作:记作:A A B B(或(或ABAB)如:如: C C3 3 D D3 3= C= C4 4AB图形表示:

8、图形表示:例例:C:C3 3=出现的点数大于出现的点数大于3;3;D D3 3=出现的点数小于出现的点数小于5;5;C C4 4=出现出现4 4点点;第8页/共19页5.5.互斥事件互斥事件若若A A B B为不可能事件(为不可能事件( A A B B = = )那么称事件)那么称事件A A与事件与事件B B互斥互斥. . (1 1)事件)事件A A与事件与事件B B在任何一次试验中不在任何一次试验中不 会同时发生。会同时发生。(2 2)两事件同时发生的概率为)两事件同时发生的概率为0 0。图形表示:图形表示:AB例例: C: C1 1=出现出现1 1点点;C C3 3=出现出现3 3点点;如

9、如:C:C1 1 C C3 3 = = 注:事件注:事件A A与事件与事件B B互斥时互斥时第9页/共19页(3 3)对立事件一定是)对立事件一定是互斥事件,但互斥互斥事件,但互斥 事件不一定是对立事件。事件不一定是对立事件。6.6.对立事件对立事件若若A A B B为不可能事件,为不可能事件, A A B B为必然事件,那么事为必然事件,那么事件件A A与事件与事件B B互为对立事件。互为对立事件。注:注:(1 1)事件事件A A与事件与事件B B在任何一次试验中有在任何一次试验中有且且 仅有一个发生。仅有一个发生。例例: G=: G=出现的点数为偶数出现的点数为偶数;H=H=出现的点数为奇

10、数出现的点数为奇数;(2 2)事件)事件A A的对立事件记为的对立事件记为A如如: :事件事件G G与事件与事件H H互为对立事件互为对立事件第10页/共19页(3 3)“抽出的牌点数为抽出的牌点数为5 5的倍数的倍数”与与“抽出的抽出的牌点数大于牌点数大于9 9”;例例. . 判断下列给出的每对事件,是否为判断下列给出的每对事件,是否为互斥互斥事件,是否为对立事件,并说明理由。事件,是否为对立事件,并说明理由。从从4040张扑克牌(红桃、黑桃、方块、梅花点数张扑克牌(红桃、黑桃、方块、梅花点数从从1-101-10各各1010张)中,任取一张。张)中,任取一张。(1 1)“抽出红桃抽出红桃”与

11、与“抽出黑桃抽出黑桃”;(2 2)“抽出红色牌抽出红色牌”与与“抽出黑色牌抽出黑色牌”;互斥事件互斥事件对立事件对立事件既既不是对立事件也不是对立事件也不是不是互斥事件互斥事件第11页/共19页( (二二) )、概率的几个基本性质、概率的几个基本性质1.1.概率概率P(A)的取值范围的取值范围(1)0P(A)1.(2 2)必然事件的概率是)必然事件的概率是1.1.(3 3)不可能事件的概率是)不可能事件的概率是0.0.第12页/共19页(B)(A)B)(Afffnnn思考:思考:掷一枚骰子掷一枚骰子, ,事件事件C C1 1=出现出现1 1点点 ,事件,事件 C C3 3=出现出现3 3点点

12、则事件则事件C C1 1 C C3 3 发生的频发生的频率率 与事件与事件C C1 1和事件和事件C C3 3发生的频率之间有什发生的频率之间有什 么关系么关系? ?结论:结论:当事件当事件A A与事件与事件B B互斥时互斥时第13页/共19页2.2.概率的加法公式:概率的加法公式:如果事件如果事件A A与事件与事件B B互斥,则互斥,则P( (A A B B)= = P( (A A) + ) + P( (B B)若事件若事件A A,B B为对立事件为对立事件, ,则则P( (B B)=1=1P( (A A) )3.3.对立事件的概率公式对立事件的概率公式第14页/共19页第15页/共19页(

13、1 1)取到红色牌(取到红色牌(事件事件C C)的概率是多少?)的概率是多少?(2 2)取到黑色牌(取到黑色牌(事件事件D D)的概率是多少?)的概率是多少? 例例 如果从不包括大小王的如果从不包括大小王的5252张扑克牌中随张扑克牌中随机抽取一张,那么取到红心(机抽取一张,那么取到红心(事件事件A A)的概率)的概率是是 ,取到方片(,取到方片(事件事件B B)的概率是)的概率是 。问。问: :4 41 14 41 1所以所以A A与与B B是互斥事件。是互斥事件。因为因为C=C=A A B B, C C与与D D是互斥事件,是互斥事件,所以所以C C与与D D为对立事件。为对立事件。所以所

14、以根据概率的加法公式,根据概率的加法公式,又因为又因为C C D D为必然事件,为必然事件,且且A A与与B B不会同时发生,不会同时发生,解解: :(1)(1)(2 2)P P( (A A)+)+P P(B B)21得得P P(C C)= =1 1P P(C)(C)21P P(D D)= =练习练习:课本第课本第121页页1,2,3,4,5第16页/共19页1 1、事件的关系与运算,区分、事件的关系与运算,区分互斥事件与对立事件互斥事件与对立事件2 2、概率的基本性质、概率的基本性质 (1 1)对于任一事件)对于任一事件A,A,有有0P(A)10P(A)1 (2 2)概率的加法公式)概率的加

15、法公式 P(AB)= P(A)+ P(B)P(AB)= P(A)+ P(B) (3 3)对立事件的概率公式)对立事件的概率公式 P(B)=1P(B)=1P(A)P(A)第17页/共19页练习:练习:1.如果某士兵射击一次,未中靶的概率为如果某士兵射击一次,未中靶的概率为0.05,求中靶概率。,求中靶概率。解:设该士兵射击一次,解:设该士兵射击一次,“中靶中靶”为事件为事件A,“未中靶未中靶”为事件为事件B, 则则A与与B互为对立事件,故互为对立事件,故P(A)=1-P(B)=1-0.05=0.95。2.甲,乙两人下棋,若和棋的概率是甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是,乙获胜的概率是0.3 求求:(:(1)甲获胜的概率;()甲获胜的概率;(2)甲不输的概率。)甲不输的概率。解解:(1)(1)“甲获胜甲获胜”是是“和棋或乙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论