自动控制原理非线性控制系统PPT精品文档_第1页
自动控制原理非线性控制系统PPT精品文档_第2页
自动控制原理非线性控制系统PPT精品文档_第3页
自动控制原理非线性控制系统PPT精品文档_第4页
自动控制原理非线性控制系统PPT精品文档_第5页
已阅读5页,还剩105页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1第九章 非线性控制系统非线性系统一般由三部分组成: 被控对象,执行机构,测量装置执行机构测量装置被控对象第一节 概述 一般数学数学描述 分类:定常、时变; 连续、离散),(),(tuxgytuxfx2 放大元件由于受电源电压或输出功率的限制,在输入电压超过放大器的线性工作范围时,呈现饱和现象(a). 执行元件的电动机,由于轴上存在着摩擦力矩和负载力矩,只有在电枢电压达到一定数值后,电枢才会转动,存在着死区;而当电枢电压达到定数值时,电机转速将不再增加呈现饱和现象,如(b) 传动机构受加工和装备精度限制,换向时存在着间隙特性,如(c)。(a)非线性环节举例:(b)(c)3线性系统与非线性系统的

2、区别 对于线性系统而言,一旦给定某个线性系统,那么在此系统中,只有一种运动形式,而且所有的状态变量都与其初值成比例。而非线性系统则不同,随着初始状态的不同,系统可能出现不同类型的运动。 首先讨论线性系统: ,此系统的解可以表示为:如研究另一个初始状态,它是x0的k倍,则由此初始状态出发的系统运动为:可以看出,从不同初始状态出发的线性系统运动属于同一类型,而且成比例 Axx 为初始状态,00e)(xxtxAt000eee)(xkkxxtxAtAtAt举例说明4tx线性系统在不同初始条件下的运动以具体的二阶系统范德波尔方程(非线性系统)为例:对于范德波尔方程来讲,系统存在三种不同的运动形式:周期运

3、动,收敛运动和发散运动,而且完全由初始状态决定。 0)1 ( 1 . 02xxxx 范德波尔方程不同初始条件下的运动CAtxB轨线C收敛振荡,收敛到轨线A的周期运动。系统能够克服扰动对状态的影响,保持固定振幅和频率的稳定周期运动A,称之为自振。轨线A等幅周期振荡;轨线B发散振荡,趋向于轨线A的周期运动;5 自振是非线性系统中非常重要的一种运动形式,分析自振的产生原因,确定自振的频率和幅值,研究自振的抑制方法是非线性系统分析的重要内容。 事实上,非线性系统的内容十分丰富,运动类型很多,除自振以外,还会出现一些线性系统中不可能出现的特性,如跳跃、多平衡状态、混沌、甚至是更复杂的过渡过程等。而且对于

4、每一运动现象,也呈现出丰富的多样性,如自振,系统就可以有不同类型、数目、特点的自振。 系统处于长时间大幅度的振荡作用下,会造成机械磨损、控制误差增大等,因此多数情况下不希望系统有自振发生。但某些时候通过在控制中引入高频小幅值的颤振,可克服间歇、死区等非线性因素的不良影响。注意:6模型线性化 严格的讲,几乎所有的控制系统都是非线性的,因为系统本身构成系统的各个环节无法用线性关系来描述,那么在线性系统中广泛应用的叠加原理就不再适用了。许多用来分析线性系统的方法和技术就不能用来分析非线性系统。 为了继续使用较为成熟的线性系统分析设计方法,通常是把非线性系统近似线性化。这种线性化只适用于非线性程度不严

5、重的情况,如死区较小,输入信号幅值较小,传动机构空隙不大时,都可忽略非线性特征的影响,将其视为线性环节,另外系统工作在某个数值附近的较小范围内,也可以近似看作线性的。 最常见的线性化方法就是在工作点进行泰勒展开,然后忽略高阶导数项。为高阶导数项,)()()()()()(00000 xxxfxxxfxf7为非线性的微分方程之间显然液位和输入为:则液位系统的动态方程的黏度与阀阻。:比例系数取决于液体,据水力学原理:储水槽横截面流出量输入量:液位高度),其中实验室中的水槽装置(iiioiQHKQQQdtdHCKHKQCQQHd 00: :(d)iQ0QH举例1:8),(,写作通常在工作点附近直接性方

6、程:就求出小偏差的近似线程用上述方程减去稳态方)(:项省略,代入原系统得展开的一次近似,高阶变化较小,所以取泰勒,由于)(性化泰勒展开为非线性函数,将它线,附近变化,取在附近,相应的输入量工作在设液位000000000000000000022:21)(21iiiiiiiiiiiQHQHHHKQdtdHCHHKQdtHdCHKQdtdHCHHHHKQQdtHHdCQHHHHHHHQQQHHHQQHH 9为泰勒展开。态空间表达,其方法仍将其线性化得到线性状通常为零点),(非线性函数,工作点为如程形式如果给定系统是状态方,),(),(2,2010201021222211121211uuxxffuxf

7、uxxuxfuxxxxx 举例2:非线性系统稳定线性系统稳定uufufufufxxfxfxfxfxuufxxfuxfuxfxxxuuufxxxfuxfuxfuxuxuxuxuxux),(22122111),(22122111),(),(0000),(0),(00000000000000),(),()()(),(),(10对于非线性程度比较严重,且系统工作范围较大的非线性系统,建立在线性化基础上的分析和设计方法已经难以得到较为正确的结论,只有采用非线性系统的分析和设计方法才能解决高质量的控制问题。为此,必须针对非线性系统的数学模型,采用非线性控制理论进行研究。研究非线性控制理论的意义11典型非线

8、性环节及其影响 死区特性;饱和特性连续非线性特性 xf(x)xf(x)死区可由各种原因引起,如静摩擦、电气触点的气隙、触点压力、各种电路中的不灵敏值等等;对系统性能的影响也各不相同,有时可能导致系统不稳定或自激振荡,但有另外一些场合,却有利于系统的稳定性或是消除自振。在随动控制系统中,死区的存在将会增大系统的稳态误差。许多执行元件也都具有饱和特性,例如伺服电机。通常进入饱和区后,系统放大系数下降,从而导致稳态精度降低。实际上,执行元件一般都兼有死区和饱和两种特性。12 不连续非线性特性继电型非线性xf(x)xf(x)xf(x)xf(x) 继电特性具有各种形态,除理想的继电特性之外,还有带死区、

9、带滞环等环节的继电特性。 继电器是控制系统与保护装置中常见的一种器件,继电特性常常使系统产生振荡,如果选择合适的继电特性可以构成正弦信号发生器。13非单值区特性滞后;间隙xf(x)xf(x)xf(x)xf(x)xf(x) 间隙特性一般常见于机械传动装置,例如传动齿轮,由于加工精度的限制和装配缺陷,主动齿轮与从动齿轮之间会产生间隙特性。 控制系统中间隙特性的存在,往往促使系统产生自振,稳定性变差,稳态误差增加。14以理想继电器和带有空间滞后的继电器特性为例,说明分段线性化后的数学表达式xf(x)k-k 0 ,0 ,)(xkxkxfxf(x)k-ka-a0, ,0, ,),(xaxaxkxaxax

10、kxxf或或15非线性系统的研究方法及特点相平面方法李亚普诺夫稳定性理论描述函数法 研究对象是二阶系统,利用系统微分方程在相平面上建立系统解的几何形象,从而获得二阶系统的运动性质。 特点:无需求解非线性微分方程,直接给出能够显示系统运动特征的相图,从而获得系统全部运动性质的定性知识。 独特优越性:系统存在无限多的轨线运动,只需画出其中几条就可以获得系统全部轨线的概貌。相平面方法16例:二阶系统(谐振子)相轨迹方程为 相轨迹是一组椭圆族,系统只发生一种类型的运动相轨迹所表示的周期解,且与初始状态有关。02xx 22222Axxxx17描述函数法(谐波线性化法): 非线性处理的近似方法,控制工程中

11、较为普及的一种实用方法。 优点:比较简单,解决问题全面,且适用于高阶系统和各种非线性特性。 缺点:数学理论基础不完善,得到的结果既不是充分的,也不是必要的,而且在近似过程中会丧失部分非线性信息,从而无法从谐波线性化方程中取得关于非线性系统的某些更复杂现象的本质与特性18 系统结构系统结构 非线性环节的描述函数近似于一个复数增益的比例环节,从而可以利用线性系统的频域分析方法来讨论稳定性。NLeyLinear Plantr 非线性元件的描述函数就等价于线性系统的频率特性,所以线性系统理论中的频域结果,如奈氏判据,波特图,霍尔维茨判据及根轨迹方法等,几乎可以推广到非线性系统中来研究非线性元件的稳定性

12、、周期解等。19Lypunov稳定性理论: 在非线性系统控制中,它是研究系统稳定性的主要方法 Lypunov第一方法:用级数形式的解来研究系统稳定性,即将系统在原点展开成泰勒级数的形式,得到一阶线性近似方程,它的稳定性就决定了非线性系统的稳定性,为一般线性化方法奠定了基础,同时也给出了线性化方法成立的条件 Lypunov第二方法:无需求解方程而直接判断解的稳定性。此方法关键是找到一个正定且有界的V(x,t)函数,且保证V函数沿时间t的导数为负定的,那么系统就是稳定的。其中V(x,t)函数可以看作是能量系统的能量函数,从物理学角度来讲,如果一个系统的能量是有限的,且能量随时间的变化率为负时,那么

13、这个系统的所有运动都是有界的,而且最终在能量为零时,所有运动都会返回到平衡位置,即系统达到稳定。20 研究方法的特点 目前通常用到的(不是全部)非线性方法有一个基本特点,就是总以某种方式通过线性化而建立起来的。换句话说就是以线性方法为基础加以修补使之能够适应解决非线性问题的需要。相平面方法:实质是分区线性化方法描述函数方法:谐波线性化方法 Lyapunov第一稳定方法:一阶线性化近似化方法 Lyapunov第二稳定方法:本质是真正的非线性方法,但一般V函数构造为线性二次型附加修正项的形式,真正的非线性方法也是在线性为基础的情况下才得以实现的21 前面介绍的三种方法对非线性系统的分析与控制主要是

14、定性的,与线性系统的研究进展比较起来远远不如,其主要原因就在于没有合适的数学工具。在线性定常系统中,系统的性质仅取决于由系统矩阵表示的各种变换形式,但是对于非线性系统来讲却非常复杂,数学上仅有的可利用结果只是微分几何中局部变换等并不十分完善的工具。微分几何控制理论就是在这种情势下,用微分几何来研究系统的能控性、能观测性等基本特性作为开始发展起来的。 非线性系统的微分几何控制理论是近年来非线性控制研究的主流,内容包括基本原理和反馈设计两大部分。其他非线性研究方法其他非线性研究方法微分几何控制理论:微分几何控制理论:22 当然微分几何控制方法在非线性系统的研究中并不是万能的,目前已经发现在涉及到非

15、线性系统的可逆性质以及在动态反馈下的结构性质时呈现病态现象。而且目前对微分几何控制进行介绍的著作中,都是以微分几何,泛函等现代数学知识作为必备基础的,这样在客观上就给一般的工程技术人员或是工科院校的学生造成很大的困难,无法对其实质性成果有一个感性的认识。 “近20年来用微分几何方法研究非线性所取得的成功,就像20世纪50年代用拉氏变换及复变函数理论对单输入单输出系统的研究,或是20世纪60年代用线性代数对多变量线性系统的研究一样,都具有里程碑的性质。”Isidori23 为解决微分几何方法中遇到的病态问题,一方面,Fliss成功地把微分代数引入到非线性控制理论中,另一方面,Di Benedet

16、to,Grizzle和Moog从更易于接受的线性代数角度重新考虑了非线性系统的结构性质。基于这方面的理解,从而形成了区别于其他方法的非线性系统的微分代数方法,它已经成为与微分几何方法相辅的工具。其他非线性研究方法其他非线性研究方法微分代数方法:微分代数方法:24系统结构:注:注:线性和非线性部分可以分开;线性和非线性部分可以分开;绝大多数的线性绝大多数的线性系统都是低通滤波器,则非线性元件的输出系统都是低通滤波器,则非线性元件的输出y主要主要是由低频成分组成,非线性元件是由低频成分组成,非线性元件 NL就等价于一个就等价于一个线性比例环节;线性比例环节;非线性具有奇对称的静态特性。非线性具有奇

17、对称的静态特性。第二节 描述函数方法25 非线性环节:输入为 如果输出y(t)在时间段T内是有界可积的(存在最大最小值),则可以展开为Fourier级数: )sin(2sincos2)(1010nnnnnntnYAtnBtnAAty xXtsin一 描述函数定义:26 2TAy tn ttn 102 ( )cos()dBy tn ttn 102 ( )sin()dYABnnn 22 nnnAB arctan当非线性环节具有当非线性环节具有奇对称特性时,静奇对称特性时,静态分量态分量A A0 0为零为零27 描述函数:在正弦谐波 输入作用下,非线性环节稳态输出中一次谐波分量和输入信号的复数比,即

18、 和 分别为输出一次谐波的幅值、相位xXtsin XjABeXYXN11j11 Y1 1注意:Fourier级数特性: 1、 y(t)为奇函数:y(t)=-y(-t),则 2、 y(t)为偶函数y(t)=y(-t),则 3、 y(t)为半波对称 ,则 An 00 nBytyt()() Ak20 Bk20 28例1 理想继电非线性xytytxM二 描述函数的计算MttMtttyB4dsin2dsin)(10201 XMXN4)( 2 0 )(tMtMty,29例2 死区饱和xytytxdsksdX两个重要的角度:当 时,有当 时,有当 时,有 ddX arcsindt00)( ty ssX ar

19、csinst2/)()(dskty dst)()(dxkty 30XBN1 dsdsk2sin2sin22 31sin ddX d 2sin 212dXdXsin ssX s 2sin 212sXsX其中纯死区Xs s 2sin20 s 21arcsin22sin2XdXdXdkkkNdd纯饱和d 0 d 0sin20 d 21arcsin22sin2XsXsXskkNss32例3 具有滞环的继电特性xytytxMt1t2t1t2hh MX2Tx tXt( )sin Xhtarcsin1 NMXehX 4 jarcsin212120 tttttttMMy ,arcsin2XhtXMhtttyA

20、4)(dcos)(1201 220114)(dsin)(1 XhMtttyB 33例4 继电死区滞环xytytxMt1t1t22h Mt22tXtx sin)( ytttttttMtttMttt 00212121212, NaXbXeab 121211jarctanXhMa 41 221112XhXhXMb 34描述函数的特性 描述函数在数值上等于非线性环节稳态输出的一次谐波与输入函数的复数比,是关于输入幅值X的函数;对于单值的非线性环节,如死区、饱和、继电等环节,其描述函数为实数;对于多值非线性环节,如间隙、带有滞环的继电环节等,其描述函数为复数。从物理意义上来讲,描述函数可以看作是非线性环

21、节的等效复数放大增益。 35三 描述函数分析方法 等效方块图 NL是非线性环节,Gp(S)是线性环节的传递函数。当系统由多个线性和非线性环节组合而成时,在一些情况下,可以通过等效变换,使系统简化成这种典型结构。36 在非线性系统经过简化后,具有典型结构。当系统的线性部分具有较好的低通滤波特性。在非线性环节的输入为正弦信号时,实际输出中必定含有高次谐波分量,经过线性部分传递之后,由于低通滤波作用,高次滤波分量将被大大削弱,因此保证闭环通道内近似地只有一次斜波分量流通,从而保证对非线性环节可以用描述函数来表示。描述函数就可以作为一个具有复变增益的比例环节。这样非线性系统经过谐波线性化后就等效为线性

22、系统。应用线性系统的频率稳定判据分析非线性系统的稳定性。说明37)()()(21XNXNXN )()()(21XNXNXN 等效变换的原则是在参考输入r(t)=0的条件下,根据非线性特性的串、并联把非线性部分简化成一个等效非线性环节,然后在保持等效非线性环节的输入输出关系不变的基础上来化简线性部分。根据各线性环节输入输出关系图再求N(X)非线性并联非线性串联38等效线性环节:) 1(1)(ssTssG举例 39等效线性环节:)()()(1)()(3212sGsGsGsGsG举例 40闭环非线性系统等效传函特征方程)()(1)()()()(sGXNsGXNsRsY 0)()(1sGXN描述函数分

23、析法:稳定判据: 由 和 判断系统稳定性: 当 包围 系统不稳定; 当 不包围 系统稳定; 当 穿过 系统临界稳定,周期振荡)j (G)(1XN)j (G)(1XN)j (G)(1XN)j (G)(1XN41不稳定 极限环 稳定 极限环:当 穿过 时对应的等幅周期振荡即为极限环交点的位置确定了极限环的幅值和频率交点的位置确定了极限环的幅值和频率)j (G)(1XN42极限环的稳定性D: 不包围 - 稳定振荡,振幅衰减,系统向稳定方向发展 C: 包围 - 不稳定,振幅增加,C点向着B点移动 F: 包围 -不稳定,振幅增加,F点也向着B点移动 E: 不包围 - 稳定,振幅衰减,E点也向着B点移动A

24、 , B: 极限环C, D, E, F: 不同振幅的振荡分析:)j (G)(1XN)j (G)(1XN)j (G)(1XN)j (G)(1XN结论:A点极限环是不稳定的; B点极限环是稳定的43 极限环稳定性判据:极限环稳定性判据:在曲线在曲线 和曲线和曲线 的交点处,如果曲线的交点处,如果曲线 沿着振幅沿着振幅X X增加的方向,从不稳定区域(曲增加的方向,从不稳定区域(曲线线 包围的区域)进入稳定区域(曲线包围的区域)进入稳定区域(曲线 不包围的区域),那么该点的极限环振荡是稳定不包围的区域),那么该点的极限环振荡是稳定的;反之,就称该点对应的极限环振荡是不稳定的;反之,就称该点对应的极限环

25、振荡是不稳定的。的。)(1XN)j ( G)(1XN)j ( G)j ( G44Step1 写出闭环特征方程:Step2 当 是实函数Step3 当 是复函数)(XN)(XN0)j ()(1GXNXXNGG)(1)j (Re0)j (Im极限环的计算XGXNGXN,1)j ()(Re0)j ()(Im45例1 分析极限环:给定线性系统和死区非线性元件 21arcsin2)(XXXkkXN)j5 . 01)(j1 (j)j (KG46 根据给定的非线性元件描述函数,可知: 线性部分在K1时对应的曲线G(jw)如图中曲线1所示,其中穿越频率与负实轴的交点为 11)(1)(1 kNN, 2010)2

26、5. 01)(1 (j)j5 . 01)(j1 (Im0)j (Im222KG313)25. 01)(1 (j)j5 . 01)(j1 (Re)j (Re22KKG解:欲调整增益使其出现极限环,如曲线2,有即当K=3时,系统不稳定,存在极限环,且极限环是不稳定的。313 KK不包围,给定非线性系统是稳定的47例2:试用描述函数方法分析:(1)k=15时,非线性系统的运动。(2)欲使系统不出现自振荡,确定k的临界值。u) 12 . 0)(11 . 0(sssk存在稳定周期运动。存在稳定周期运动。),在交点(在交点()(与与可见可见)(与负实轴交点为与负实轴交点为穿越频率穿越频率,曲线如红线曲线如

27、红线时,时,)在)在(线性部分:线性部分:)()(线性描述函数为线性描述函数为解:查表,得出饱和非解:查表,得出饱和非,01112 . 01 . 02 . 0*1 . 0*1507. 72 . 0*1 . 011115)(15 . 0)(1;)(1arcsin22121212jANTTTTkTjGTTTTkSGANANaAAaAaAaCANGXGXG 4812-0.5-1。如如绿绿线线的的临临界界值值为为即即无无交交点点)(与与使使,应应调调整整为为使使系系统统不不出出现现自自振振荡荡2, 5 . 702. 03 . 0*5 . 05 . 0,1. 22121 MAXGkkTTTkTANTK)

28、提高质量改变参数(如奈氏判据曲线)(和在复平面上绘制结构图化简分析步骤总结:KANTG. 4. 31. 2. 149例3 分析极限环,给定非线性环节Step 1 画出闭环系统的结构图12 xx 0 xx ,0 xx ,12 xx Step 2 计算系统的传函与描述函数:EEMEN44)()2(1)()2()()1 ()2(L)(L)()()(2ssssXsssXsxxxxsMsYsG 50Step 3 稳定性分析闭环系统是不稳定的,极限环稳定51Step 4 计算极限环周期振荡的频率和幅值)4()2j(3)2j (jj1)j (22G0)4()2()j (Im22G221)4(3)2j (Re

29、22G21)2j (Re)(1GEN2 E52总结 描述函数方法给出了系统稳定性的有关信息,但是无法给出系统的瞬时响应信息。 描述函数方法是一种近似方法:线性部分是一个低通滤波器; 与 越垂直,结果就越准确。)j ( G 1NMore accurate Less accurate 1NGp()j1NGp()j53 采用正弦波作为输入得到的描述函数方法要比以其他函数为输入得到的描述函数方法准确。 采用描述函数方法遇到的困难程度和获得结果的准确程度与非线性环节的复杂程度有关。 对于多个非线性环节的组合,如下图,NX1()xyzNY2()()(12XNYNXZ 54第三节 相平面方法 相轨迹的特点

30、相轨迹的绘制方法 奇点与极限环 线性系统相平面分析 非线性系统相平面分析 总结 适应于二阶非线性系统:x x( , )xf x x 0551 上半平面: x增加,方向从左到右2 下半平面: x减少,方向从右到左3 所有的轨迹如果穿过x轴,则方向必定是垂直的。4 奇点是平衡点, 对所有二阶系统均在x轴上 x 00 x 一 相轨迹的特点0 dxxd56二 相轨迹的绘制方法 解析法:例1:给定二阶系统解:利用积分得: xx 20 xxxx ddxxxxdd 20 x xx xdd 20220220222Axxxx57例2 给定系统解:由方程 可得:由初始条件可知: xM xMtC 1xMtC tC

31、12212C10 Cx20 xM xx( ) 00 ( )x 00 xMt xMtx 1220()()xxx MM xx20022 x xM 1x0 x xM 1x058 图解法等倾线法:等倾线:穿过曲线 上任意一点的所有相轨迹均具有相同的斜率,也就是具有相同的运动方向。xxxfxx),(ddxxdd一组不同的斜率值,就定义了一组不同的等倾线。所有这些等倾线给出了相轨迹切线的方向场。等倾线法的基本思想是确定相轨迹的等倾线,进而绘出相轨迹的切线方向场,然后从初始条件出发,沿方向场逐步绘制相轨迹。59例3 采用等倾线法画出给定系统的相轨迹:解:系统可以写作令 ,则有xxx 202 xxxxxdd

32、202 dd xx xxx 202 xx 22给定不同的斜率值,就定义了不同的等倾线。60假定: ,则有等倾线方程为: 0 5 . 1 xx 11 当 时,当 时,当 时,当 时,当 时, 0 xx x 0 1 x x 1 0 xx () 10 2 xx 4 xx 13x x 1 2 4 061 图解法 法A 相轨迹可以看作是一系列的中心在x轴上的小圆弧连接而成B 动力学方程可以写成:其中 是一个连续的单值函数。C 将动力学方程左右两边同时加入一函数,得令),(txxfx f x x t( , , )( , , )xxf x x tx 2222),( xtxxf D 为便于绘图,可适当选取 和

33、 62E 在 邻域内,取F 新的运动方程为),(111txx 1111 ( ,)xxtconst xx 221()xx 210G 对上述方程求解H 相轨迹为 圆心: 半径:()xxA22122 ()xxB 2122 PQ xx12112 (, ) 10 x xP xxt(,)111Q(, )1063例 用 法绘出给定系统的相轨迹(1)系统运动方程为令 则 xxx 202 xxx 22 222xx xx 22()xxR 222(2)对于给定点 Rxxx1121122 112 x(, )xx1164xyx 2yAByByAyABBA12A65线性二阶系统的相轨迹线性二阶系统的相轨迹 给定线性二阶系

34、统的微分方程其平衡状态只有一个,即原点。对应的特征根为下面对线性二阶系统在不同参数情况下的相平面图进行分析,并由此划分奇点(平衡状态)的类型, 0bxxax 2422, 1baa66 b0,系统特征根为 a21, 0 b0时线性二阶系统的相平面图67 b0,系统特征根为 b0,系统方程可写为:1)当 ,特征根为一对具有负实部的共轭复数根,奇点为稳定焦点,相轨迹如右图022xxxnn 2,2nnba102)当 ,特征根为一对具有正实部的共轭复数根,奇点为不稳定焦点,相轨迹如右图01 693)当 ,系统特征根为负实数根,奇点为稳定节点11 斜率为 和 的直线是相轨迹,也是渐近线2 如果 ,则当 时

35、,所有的相轨迹均趋向于渐近线 1 2 12 t 1说明704)当 ,特征根为正实数根,奇点为不稳定节点:1715)当 ,特征根为一对纯虚数根,奇点为中点x x12j072 极限环:孤立的闭环相轨迹x xx x稳定极限环稳定极限环 不稳定极限环不稳定极限环半稳定极限环半稳定极限环 x x73线性系统相平面分析例 绘出给定二阶系统的相轨迹解:列出基本方程Ks Ts()1R s ( )E s ( )C s ( )C sR sKTssK( )( ) 2E sR sTssTssK( )( ) 22TeeKeTrr 输入为阶跃函数: 误差方程为:r tRt( )( ) 1rr 0TeeKe 0TeeKee

36、Re( ), ( ) 000074奇点为 根据二阶系统 时,稳定焦点 时,稳定节点 0021xxee 00TK 20 140 KT140 KT e eRe eR140 KT140 KT75非线性系统相平面分析例 求出给定系统的相轨迹:其中非线性环节为:E s ( )Y s ( )GNR s ( )Ks Ts()1M s ( )emkIIIIIIe0 e0meeekeee forfor001, k76解:系统方程为在 平面上,存在两个微分方程,分成三个区域。令 C sM sKs Ts( )( )() 1E sR sC sR sKs TsM s( )( )( )( )()( ) 1TeeTrrKm

37、 ee , eE( )00 ( )e 00 输入为阶跃函数:r tt( )( ) 1 r 0 r 0TeeKeTeekKe 00 Areas I and III Area II77奇点: ,假设因为 ,所以ee 00, 1 40 kKTk 1140 KT 小输入 (0,0)为稳定节点 大输入 (0,0)为稳定焦点ee 0TeekKe 0 ee 0TeeKe 0 相轨迹如右图对于A,C点,(0,0)是稳定焦点对于B,D点,(0,0)是稳定节点e eE0IIIIIIe0 e0ABCD78加入非线性环节后,加速系统调节过程:1 当环路中信号较大时: 不完全衰减,误差衰减较快2 当环路中信号较小时:

38、严格衰减,完全避免了振荡出现说明79例2.具有内部负反馈系统相轨迹的绘制与分析 对于具有死区特性的非线性系统,当死区范围较小且线性部分的时间常数教大时,特别容易产生极限环振荡。在非线性控制系统中采用内部反馈的方法来抑制或消除极限环振荡。 温度控制系统802GmKKyTTSTTKKsMsY101021010)()( yyre 000000yeMyeMm 000101001010yMKKyTTyMKKyTT 解:首先假设系统无内部反馈 ,根据系统结构图可知: 考虑负反馈作用 ,则具有继电特性的非线性环节可以写为:则非线性系统可以用下面两个线性微分方程来描述:81 02 02 11001020100

39、102yAyTTMKKyyAyTTMKKy采用解析法可以求出上述两个线性微分方程对应的相轨迹方程:其中A0和A1是由相轨迹初始点确定的两个常数。两个线性方程对应的相轨迹是两个开口完全相反的抛物线.无内部反馈的温度控制系统的相轨迹就是封闭极限环曲线,无论从任何初始值出发都会产生自振。只是振荡的幅度和周期不同。82)(22cKycKyre 000000KyTccKyTSTKSCSY )()( 00000020011000200110yKTKyeMKKyTTyKTKyeMKKyTT 0002 yKTKy下面分析加入内反馈G2对系统的影响。此时反馈作用可以写作:信号C(s)与Y(s)之间的关系可以下式

40、来表示:则带有内部反馈的闭环系统微分方程可以写成:可见加入内部反馈之后,描述系统的微分方程并未发生改变,但开关线由原来的y=0变为83 相轨迹:可见开关线的变化使得相轨迹由原来的封闭曲线转化成内螺旋形,并最终收敛于原点,这时系统运动由极限环的等幅振荡变成了衰减振荡。内部负反馈的作用就是消除自振。84 如果能够通过引入内部反馈来改变开关线,使开关线变成一条过原点且收敛到原点的相轨迹,那么无论是从任何一点出发的运动,只要其到达开关线上,就会沿开关线收敛到原点。这种控制肯定是时间最短的最优控制,称做Bang-Bang控制.85 总结 描述函数方法描述函数方法相平面分析相平面分析系统复杂性系统复杂性

41、1 1stst & 2 & 2ndnd 阶阶系统系统非线性环节非线性环节复杂性复杂性 分段线性化分段线性化时间响应时间响应 稳定性分析稳定性分析 极限环分析极限环分析 精度精度 所用方法所用方法等价线性化等价线性化图解法图解法86第四节 李亚普诺夫稳定性理论 对于一个给定的控制系统,稳定性分析通常是最重要的。如果系统是线性定常的,那么有很多稳定性判据,如劳斯稳定性判据和奈奎斯特稳定性判据等。然而,如果系统是非线性的,或是线性时变的,则上述稳定性判据将不再适用。分析非线性系统稳定性的描述函数方法和相平面方法也有各自的缺陷,如描述函数方法要求线性部分具有良好的滤波性能,相平面方法只适用于一阶、二阶

42、系统。本节介绍的李亚普诺夫稳定性理论是确定非线性系统、时变系统稳定性的最一般方法。当然,这种方法也可适用于线性定常系统的稳定性分析。87在本节中,除非特别申明,将仅讨论扰动方程关于原点()处平衡状态的稳定性问题。 李亚普诺夫意义下的稳定性李亚普诺夫意义下的稳定性 考虑如下非线性系统如果在该系统中,总存在则称 为系统的平衡状态或平衡点。 ),(txfx t, 0),(对所有txfeex平衡状态平衡状态),(txfx 0), 0(tf0ex0ex注:任意一个孤立的平衡状态(即彼此孤立的平衡状态)都可通过坐标变换,统一化为扰动方程的坐标原点,即或88 所谓系统运动的稳定性,也就是研究平衡状态的稳定性

43、,也就是当受扰运动偏离平衡状态之后,能不能依靠自身系统的内部结构因素,而返回到平衡状态,或是限制在它的一个有限邻域之内。下面给出几种不同的lyapunov意义下的稳定性定义。 89Lyapunov意义下的稳定性意义下的稳定性设系统 的平衡状态 的H邻域为 ,其中H0, 为向量的2范数或欧几里德范数,即 类似地,也可以相应定义球域S()和S()。0),( ),( txftxfxe0exHxxe2211)()(neneexxxxxx在H邻域内,若对任意给定的00和任一实数 0,在S()内总存在一个状态,使得始于这一状态的轨迹最终会脱离开S(),那么平衡状态称为不稳定的。95各种稳定性之间的关系:非

44、线性时变系统:非线性时变系统:L稳定 渐近稳定 全局渐近稳定 一致稳定 一致渐稳 全局一致渐稳 按指数稳定 全局按指数稳定非线性定常系统:非线性定常系统:一致性概念消失线性时变系统:线性时变系统:全局与局部等价,且按指数稳定就等价于一致渐近稳定 线性定常系统:线性定常系统:全局与局部等价,且一致性概念消失,渐近稳定就是按指数稳定。 96在经典控制理论中,我们已经学过稳定性概念,它与Lyapunov意义下的稳定性概念是有一定的区别的,例如,在经典控制理论中只有渐近稳定的系统才称为稳定的系统。在Lyapunov意义下是稳定的,但却不是渐近稳定的系统,则叫做不稳定系统。两者的区别与联系如下表所示。

45、经典控制 (线性系统)不稳定 (Re(s)0)临界情况 (Re(s)=0)稳定 (Re(s)0)Lyapunov意义下不稳定稳定渐近稳定97李亚普诺夫稳定性理论 由力学经典理论可知,对于一个振动系统,当系统总能量(正定函数)连续减小(这意味着总能量对时间的导数必然是负定的),直到平衡状态时为止,则振动系统是稳定的。 李亚普诺夫稳定性理论是建立在更为普遍的情况之上的,即:如果系统有一个渐近稳定的平衡状态,则当其运动到平衡状态的吸引域内时,系统存储的能量随着时间的增长而衰减,直到平稳状态达到极小值为止。 李亚普诺夫引出了一个虚构的能量函数,称为李亚普诺夫函数。当然,这个函数无疑比能量更为一般,并且

46、其应用也更广泛。实际上,任一纯量函数只要满足李亚普诺夫稳定性定理的假设条件,都可作为李亚普诺夫函数,通常采用V(x,t)表示。利用其对时间的导数的符号特征,提供了判断平衡状态的稳定性、渐近稳定性或不稳定性的准则,而不必直接求出方程的解(这种方法既适用于线性系统,也适用于非线性系统)。98考虑如下非线性系统式中 如果存在一个具有连续一阶偏导的标量函数V(x,t),其中V(0,t)=0,且满足以下条件: 1、 V(x,t)正定且有界(介于两个连续的非减函数之间); 2、 负定且有界; 3、若则在原点处的平衡状态是大范围一致渐近稳定的。 ),()(ttxftx0), 0(tf),(txV),( ,t

47、xVx大范围一致渐近稳定性判别定理大范围一致渐近稳定性判别定理199说明:(1) 这里仅给出了充分条件,也就是说,如果可以构造出了李亚普诺夫函数,那么系统是渐近稳定的。但如果找不到这样的李亚普诺夫函数,则并不能给出任何结论,例如不能据此说该系统是不稳定的。(2) 对于渐近稳定的平衡状态,则李亚普诺夫函数必存在。(3) 对于非线性系统,通过构造某个具体的李亚普诺夫函数,可以证明系统在某个稳定域内是渐近稳定的,但这并不意味着稳定域外的运动是不稳定的。对于线性系统,如果存在渐近稳定的平衡状态,则它必定是大范围渐近稳定的。(4) 这里给出的稳定性定理,既适合于线性系统、非线性系统,也适合于定常系统、时变系统,具有极其一般的普遍意义。100考虑如下非线性系统式中 , 如果存在一个具有连续一阶偏导的标量函数V(x,t),其中V(0,t)=0, 且定理1中的条件2由下述条件来代替:2、 是负半定的,且 对于任意t0和任意x0,其中 表示在t0时刻从x0出发的轨迹或解则在原点处的平衡状态是大范围一致渐近稳定的。 ),()(ttxftx0), 0(tf),(txV0),(00ttxtV),;(00txt大范围一致

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论