版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、导数应用专题之含参函数的单调性讨论对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。1、 经典例题例1、已知函数,讨论函数的单调性.分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定的解区间;确定函数的减区间就是确定的解区间;讨论单调性与讨论不等式的解区间相应。解: 因为, 所以 (1) 当时,当时,;当时,;所以函数在上单调递增,在上单调递减;(2) 当时,的图像开口向上,I) 当时,所以函数在R上递增;II) 当时,方程的两个根分别为
2、且 所以函数在,上单调递增, 在上单调递减;(3) 当时,的图像开口向下,且 方程的两个根分别为且 所以函数在,上单调递减, 在上单调递增。推荐精选综上所述,当时,所以函数在上单调递增, 在,上单调递减;当时,在上单调递增,在上单调递减;当,所以函数在,上单调递增, 在上单调递减;当,函数在R上递增;小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述
3、结论。例2(2010山东理数改编) 已知函数.讨论的单调性;解:因为的定义域为所以 ,令 ,则同号法一:根据熟知二次函数性质可知g(x)的正负符号与开口有关,因此可先分类型讨论:推荐精选 当时,由于1,开口向下,结合其图象易知 ,,此时,函数 单调递减;时,此时,函数单调递增.当时, 开口向上,但是否在定义域需要讨论:因所以i) 当时,由于1,开口向上,结合其图象易知 ,此时,函数单调递增.时,,此时,函数 单调递减; ii)当时,g(x)开口向上且,但两根大小需要讨论: a) 当时,恒成立,此时,函数 在上单调递减; b) 当,g(x)开口向上且在(0,)有两根 时,此时,函数单调递减; 时
4、,此时,函数 单调递增; 时,此时,函数单调递减; c) 当时,g(x)开口向上且在(0,)有两根 时,此时,函数单调递减; 时,此时,函数 单调递增; 时,此时,函数单调递减;小结:此法是把单调区间讨论化归为导函数符号讨论,而确定导函数符号的分子是常见二次型的,一般要先讨论二次项系数,确定类型及开口;然后由于定义域限制讨论其根是否在定义域内,再讨论两根大小注,结合g(x)的图象确定其在相应区间的符号,得出导函数符号。讨论要点与解含参不等式的讨论相应。推荐精选法二: i)当时,由于1,开口向下,结合其图象易知 ,,此时,函数 单调递减;时,此时,函数单调递增. ii)当时,由于0)令,则与同号
5、 (1)当时,在定义域上为增函数 (2) 当时, 当时,g(x)开口向上,图象在x轴上方,所以所以,则在上单调递增 当,此时令,解得由于,因此可进一步分类讨论如下:i) 当时,推荐精选, ; 则在上单调递增,在上单调递减 ii)当时,或; 则在,上单调递增,在上单调递减综上所述,f(x)的单调区间根据参数讨论情况如下表:增减增增增增 (其中)小结:求单调区间要确定定义域,确定导函数符号的关键是看分子相应函数,因此讨论点有:第一是类型(一次与二次的根个数显然不同);第二有没有根(二次的看判别式),第三是有根是否为增根(在不在定义根内;第四有根的确定谁大;第五看区间内导函数的正负号(二次函数要看开
6、口)。确记要数形结合,多数考题不会全部讨论点都要讨论的,题中往往有特别条件,不少讨论点会同时确定(即知一个就同时确定另一个)。判别式与开口的讨论点先谁都可以,但从简单优先原则下可先根据判别式讨论,因为当导函数无根时它只有一种符号,相应原函数在定义域内(每个连续的区间)为单调函数较简单。推荐精选2、 巩固作业:1. 已知函数,求的单调区间.解: 2.已知函数f(x)=xax+(a1),讨论函数的单调性,求出其单调区间。解: 的定义域为.(1) (2) 若即时,0, 故在单调递增.若0,即时,由得,;由得,故在单调递减,在单调递增.若,即时,由得,;由得,故在单调递减,在单调递增. 综上所述,当,单调增区为 ,减区间是; 当时,的减区间是,增区间是; 当时,在定义域上递增,单调增区为 (不存在减区间); 推荐精选 当时,的减区间是,在增区间是.3. 已知函数()=(1+)-+(0),求()的单调区间. 解:,.(1) 当时,.所以,在区间上,;在区间上,. 故的单调递增区间是,单调递减区间是.(2)当.(3)当即时, 故的单调递增区间是.(4)当即()时, 由得,;由得,故的单调递增区间是和,单调递减区间是.(5)当即()时,由得,;由得,故的单调递增区间是和,单调递减区间是.综上知:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《物权法》本科题集
- 艾普思咨询:2024年第三季度中国汽车行业投诉洞察报告
- 南充2024年10版小学4年级上册英语第1单元真题试卷
- 第23课《出师表》教学设计-2023-2024学年统编版语文九年级下册
- 2024年油橄榄果提取物化妆品项目资金需求报告代可行性研究报告
- 房施工合同(35篇)
- 转正述职报告简短范文(7篇)
- 《古代诗歌五首》(二)-2022-2023学年七年级语文下学期期中期末考前单元复习(原卷版)
- 小栅栏教案6篇
- 职工家属去世慰问信范文(35篇)
- FZ∕T 73037-2019 针织运动袜行业标准
- 食品风味研究专题智慧树知到期末考试答案章节答案2024年中国农业大学
- 《智能仪器》课后习题答案
- 浙江省小升初数学试卷及答案二
- 教学评一体化
- 2024年高考语文备考之现代文阅读史铁生《我二十一岁那年》(附习题+答案)
- 外国新闻传播史 课件 第21-23章 新西兰等国的新闻传播事业、巴西的新闻传播事业、墨西哥的新闻传播事业
- 大数据与会计职业生涯规划
- 宁德时代2024年社招测评题库
- 2023年度省综合专家库评标专家继续教育培训考试试题(三套)
- 电力配网安全培训课件
评论
0/150
提交评论