版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、双曲函数王希对之前在双曲函数的来历是什么,与三角函数有什么关系? - 数学问题的回答不太满意,故在此重新撰文。尽我所能全面具体详细地介绍双曲函数相关的方方面面,希望它能成为最好的讲解双曲函数的文章。除了第七部分,高中生都应该可以看懂,因此我不希望大家回复不明觉厉,而是看懂它并回复受益匪浅。我希望想了解双曲函数的知友看了我的文章都能有所收获。一、发展历史双曲函数的起源是悬链线,首先提出悬链线形状问题的人是达芬奇。他绘制抱银貂的女人时曾仔细思索女人脖子上的黑色项链的形状,遗憾的是他没有得到答案就去世了。时隔170年之久,著名的雅各布伯努利在一篇论文中又提出了这个问题,并且试图去证明这是一条抛物线。
2、事实上,在他之前的伽利略和吉拉尔都猜测链条的曲线是抛物线。一年之后,雅各布的证明毫无进展(废话,证明错的东西怎么会有进展)。而他的弟弟约翰伯努利却解出了正确答案,同一时期的莱布尼茨也正确的给出了悬链线的方程。他们的方法都是利用微积分,根据物理规律给出悬链线的二次微分方程然后再求解。18世纪,约翰兰伯特开始研究这个函数,首次将双曲函数引入三角学;19世纪中后期,奥古斯都德摩根将圆三角学扩展到了双曲线,威廉克利福德则使用双曲角参数化单位双曲线。至此,双曲函数在数学上已经占有了举足轻重的地位。19世纪有一门学科开始了全面发展复变函数。伴随着欧拉公式的诞生,双曲函数与三角函数这两类看起来截然不同的函数
3、获得了前所未有的统一。二、函数定义在讲双曲函数的定义之前,我们先看一看三角函数的定义。如图所示:在实域内,三角函数的值是通过单位圆和角终边上三角函数线的长度定义的。当然这个长度是有正负的。同理,双曲函数的值也是通过双曲线和角终边上的双曲函数线的长度定义的。如图:具体的定义为,。三、函数性质和对应的三角函数性质十分类似,但又有一定的区别。四、恒等式双曲函数恒等式一定要结合着三角函数恒等式一起看,真的是太像了:五、欧拉公式欧拉公式是复变函数里几乎最重要的一个公式,它揭示了三角函数和指数函数之间的内在联系,从形式上也十分简洁优美:用替换掉,得到这样我们可以解出正弦和余弦函数与指数函数的关系式:再把双
4、曲函数拉过来看看是不是非常接近了呢?很容易看出它们之间存在这样的关系:六、复域统一先研究一下三角函数和双曲函数的级数展开。双曲函数和三角函数的区别仅仅在于是否有的幂这一项,双曲函数就是将三角函数改为非交错级数。正是由于其无比相似的级数展开,才使得它们具有十分相似的性质。我们说了这么多,两类函数似乎各种相似却还是不一样。那么三角函数和双曲函数的关系到底是什么呢?在复域上,它们的形状其实是一样的!不信?我们画一画图像。直观地看,同一行的两个函数除了角度不同之外形状是一样的。而其实这个关系前边已经说明过了:这两个式子说明对应的两个函数仅通过旋转(对于复变函数,乘就相当于逆时针旋转90)即可重合。对了
5、,大家都知道三角函数的周期是,那么大家猜猜双曲函数的周期是多少?没错,是!七、映射关系(需具备复变函数基础)正弦与余弦映射均由复变函数里的基本映射复合而成。如是由旋转的映射、指数函数映射以及如可夫斯基映射复合而成:由公式同样可知的复合过程。由上述知,宽度为的铅直带状区域是的单叶区域。我们来看看余弦函数在带状域的映射情况:求直线的像,有由此得这是一个直线到双曲线的映射,当为正数和负数时分别为其一个分支。而直线被映射为正实轴从1到的割痕,直线被映射为沿实轴到的割痕。带状域的像为整个平面,除去实轴上从-1穿过无穷远到1的线段。八、应用范围1.悬链线悬链线的方程是双曲余弦函数,这个在文章开头已经介绍过
6、。而悬索桥、双曲拱桥、架空电缆等都用到了悬链线的原理。在工程上,定义为悬链线系数,而把悬链的方程记为给应用带来很大的方便,如图:2.平行直导线单位长度电容真空中无限长圆柱形直导线平行放置,相距为,半径分别为,电荷线密度为,则其单位长电容值为虽然是反双曲函数,但我觉得也算双曲函数的应用。这个公式在常见的手册上都是可以看到的。3.换元积分形如的被积函数,除了三角换元外,还可以用、的双曲代换,如4.边值问题的解直角坐标系中的拉普拉斯方程为设可以表示为3个函数的积带入上式得由于这三项分别是的函数,因此方程恒成立就要求这三项均为常数。即当时,当时,而当时,其解即为双曲函数:九、反双曲函数简介反双曲函数是
7、双曲函数的反函数,其推导很简单:令,解关于的一元二次方程,再取自然对数即得。细心的读者会注意到反双曲函数用的符号为ar,而反三角函数用的符号为arc,为什么呢?因为反三角函数也可以用弧长定义:就是正弦值为x的角的弧长。而反双曲函数则是用面积定义,表示对应双曲扇形面积的二倍,用arsh、arch等显示与其他函数的区别。arc在英文中有弧长的意思,而ar表示area,有面积的意思。十、参考文献1Inverse trigonometric functions2Inverse hyperbolic function3Hyperbolic function4(俄)博亚尔丘克,复变函数M,北京,清华大学出版社,2008.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉溪师范学院《数据库原理与应用实训》2021-2022学年期末试卷
- 怀文第八章全章教案
- 作文写作方法与思路
- 电动汽车 - 轴向磁通油冷电机
- 2024年速冻调理肉制品项目评估分析报告
- 2024年蓄热式高温预热烧嘴项目成效分析报告
- 2024届广西壮族自治区钦州市高三假期自主综合能力测试(三)数学试题
- 残疾证个体工商户合同
- 采购合同内容汇报模板
- 不可抗拒原因员工解除合同协议书范本
- 2024年浙江嘉兴南湖区教育研究培训中心选聘研训员历年高频难、易错点500题模拟试题附带答案详解
- (新版)高级考评员职业技能鉴定考试题库(含答案)
- 师德师风考试试卷及答案
- 全国教育科学规划课题申报书:27.《教育数字化转型的区域实践探索研究》
- 2024年村级防止返贫集中排查总结会议记录
- 2024年复苏中心建设与管理急诊专家共识
- 部编版三年级上册语文全册教案(教案)
- 电信营业厅业务办理指南预案
- 静脉输液治疗护理技术操作规范
- 2023年12月英语四级真题及答案-第2套
- 2024天猫男装行业秋冬趋势白皮书
评论
0/150
提交评论