版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 八年级备课组 备课组长:杨学银 备课教师:杨丹丹 备课时间:2014年4月 3.1.1平面直角坐标系(一)教学目标:1、知识目标:认识平面直角坐标系,知道点的坐标及象限的含义。2、能力目标:能够在给定的直角坐标系中,根据点的坐标指出点的位置,会由点的位置写出点的坐标。3、情感目标:经历画坐标系,由点找坐标等过程,让学生进一步感受“数形结合”的数学思想,感受“类比”和“坐标”的思想,体验将实际问题数学化的过程与方法。教学重点:平面直角坐标系教学难点:确定点的坐标教学方法:观察、比较、合作、交流、探索.教学过程:一、知识链接1、什么是数轴?2、数轴上的点与_实数一一对应。3、写出数轴上A、B、C
2、各点的坐标。BCA6543210-1-2-3-4-52、 自主学习 1、想一想:在教室里怎样确定一个同学的位置?解放路2、上电影院看电影,电影票上至少要有几个数字才能确定你的位置?中山路中山路城市客厅国际饭店商业城3、怎样表示平面内的点的位置?(小明和小亮是网上认识的好朋友,今年暑假,小亮邀小明到他家所在的镇江市去解放路玩,他发了E_mail给小明:我家在镇江市中山路南边20米,解放路西边50米。你能根据小亮的提示从右图中找出他家的位置吗?想一想:1、小亮是怎样描述他家的位置的?2、小亮可以省去“南边”和“西边”这几个字吗?3、若小亮说在“中山路南边、解放路东边”,你能找到他家吗?4、若小亮只
3、说在“中山路南边20米”或只说在“解放路西边50米“,你能找到他家吗?三、合作探究(1)、相关的定义:平面上有公共原点且互相垂直的两条数轴构成平面直角坐标系,简称直角坐标系。水平方向的数轴称为x轴或横轴,竖直方向的数轴称为y轴或纵轴,它们统称坐标轴。公共原点O称为坐标原点。(2)、确定点的位置1、若平面内有一点P(如图),我们应该如何确定它的位置?2、若已知点Q的坐标为(m,n),该如何确定点P的位置?四、展示举例1、展示探究成果2、例:分别在平面内确定点A(3,2)、B(2,3)的位置,并确定点C、D、E的坐标。五、当堂检测1、练习:(判断:)对于坐标平面内的任一点,都有唯 一的一对有序实数
4、与它对应.( )2、在直角坐标系内,原点的坐标是0.( )3、分别在坐标系中描出下列各点的位置:A(3,4)、B(5,4)、C(6,3)、D(4,)六、课后反思3.1.2 平面直角坐标系(二) 教学目标 1.能建立适当的直角坐标系,描述物体的位置; 2.在给定的直角坐标系中,会根据坐标描出点的位置. 3.经历画坐标系、描点、连线,等过程,发展学生的数形结合的意识, 合作交流的意识.重点:建立适当直角坐标系,描述物体的位置;难点:建立适当直角坐标系.教学方法:合作、交流、探索.教学过程1、 知识链接问题:1.为什么叫做直角坐标系,画出直角坐标系. 2.写出图中点A、B、C、D,E的位置.二、自主
5、学习 例:在平面直角坐标系中描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4). 分析:先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个点分别作x轴和y轴的垂线,垂线的交点就是A. 师生共同活动作出点A、B、C、D、E由学生独立完成.三、合作探究 探究:如图,正方形ABCD的边长为6. (1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y 轴是哪条线? (2)写出正方形的顶点A、B、C、D的坐标. (3)请另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下. 四、展示质疑 讨论、
6、交流后,展示探究成果: 五、当堂检测 (1)填空题. 1.若点P(x,y)满足xy=0,则点P在_. 2.在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是_. 3.若线段AB的中点为C,如果用(1,2)表示A,用(4,3) 表示B, 那么C 点的坐标是_. 4.若线段AB平行x轴,AB长为5,若A的坐标为(4,5),则B的坐标为_.(2)解答题. 1.在图直角坐标系中描出下列各组点,并将各组点用线段依次连结起来,观察所得到的图形,你觉得它像什么? (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6
7、,5); (2)(-9,3),(-9,0),(-3,0),(-3,3); (3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9); (4)(3,7),(1,5)(2,5),(5,5),(6,5),(4,7); (5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5). 2.如图长方形ABCD的长和宽分别是6和4.以C为坐标原点,分别以CD、CB所在的直线为x轴、y轴建立直角坐标,则长方形各顶点坐标分别是多少?六、课后反思:3.1.3 平面直角坐标系(三)【教学目标】1、能根据坐标描出点的位置(坐标都为整数);2、能在方格
8、纸中建立适当的平面直角坐标系描述物体的位置;3、能根据点的位置关系探索坐标之间的关系,以及根据坐标之间的关系探索点的位置关系【重点难点】重点:根据点的坐标在直角坐标系中描出点的位置。难点:探索特殊的点与坐标之间的关系。教学方法:观察、比较、【教学过程】1、 知识链接1、在图1的平面直角坐标系、中,你能说出三角形ABC三个顶点A,B,C的坐标吗?2、思考:在上面的问题中,点B和点C的坐标之间有什么关系?每一个点的横坐标与纵坐标的符号与什么有关系?2、 自主学习1、象限的概念:2、探究点的位置与它的坐标的符号之间的关系 分组讨论: (1)四个象限内的点的坐标的符号有什么规律? (2)从上表中你还能
9、发现什么规律? 归纳:1、 二、三、四象限内点的坐标的符号分别是( , ),( , )( , ),( , ),x轴的正半轴上的点的横坐标为 ,纵坐标是 3、口答:分别说出下列各个点在哪个象限内或在哪条坐标轴上? A(6,2),B(0,3),C(3,7),D(6,3)E(2,0), F(9,5)3、 合作探究活动一:教材第85页的“做一做” 处理方法:先让学生独立尝试,然后小组内交流,最后教师进行归纳:用方位角与距离也可以描述点的位置。活动二:在方格纸上分别描出下列点的坐标,看看这些点在什么位置上,由此你有什么发现?A(2,3),B(2,1),C(2,7),D(2,0),E(2,5),F(2,4
10、)展示你的探究成果5、 当堂检测1、在平面直角坐标系中描出下列各点:A(3,1),B(3,2),C(0,2),D(3,2),E(3,1),F(0,1) 并用线段顺次连接各点,看看你画出的图形是什么形状?6、 课后反思 3.2简单图形的坐标表示教学目标: 1.根据图形特点和问题的需要能够灵活建立平面直角坐标系 2.体会可以用坐标刻画一个简单的图形教学重点:能够用坐标来表示简单的图形。教学难点:灵活选择能够表示简单图形的平面直角坐标系的方法。教学过程:1、 知识链接 1、如何构建一个平面直角坐标系? 2、一些简单的图形是否可以用平面直角坐标系来表示?二、自主学习(1)如右图,已知正方形ABCD的边
11、长为6.如果以点B为原点,以BC所在直线为x轴,建立平面直角坐标系,那么y轴是哪条直线?写出正方形的顶点A,B,C,D的坐标.(2) 如果以正方形的中心为原点,建立平面直角坐标系, 那么x轴和y轴分别是哪条直线?此时正方形的顶点A, B,C,三、合作探索 1、如右图,以点B为原点,分别以BC,AB所在直线为x轴,y轴,建立平面直角坐标系,规定1个单位长度为1,此时点B的坐标为(0,0). 因为AB= 6,BC= 6,可得点A,C,D的坐标分别为 2、如右图,以正方形的中心O为坐标原点,分别以过正方形的中心且垂直两组对边的两条对称轴为x轴,y轴,建立平面直角坐标系.此时,点A,B,C,D的坐标分
12、别为 小结:平面直角坐标系的构建不同,则点的坐标也不同.在建立直角坐标系时,应使点的坐标简明.四、展示提升1、如右图,矩形ABCD的长和宽分别为8和6,试建立适当的平面直角坐标系表示矩形ABCD各顶点的坐标,并作出矩形ABCD.在上题中,还可以怎样建立平面直角坐标系?2、右图是一个机器零件的尺寸规格示意图, 试建立适当的平面直角坐标系表示其各顶点的坐标,并作出这个示意图.五、当堂检测1、如右图, RtABC的两直角边AB, BC 的长分别 为6,5, 试建立适当的平面直角坐标系来表示 RtABC各顶点的坐标.2、如图是在方格纸中画出的船,试建立适当的平 面直角坐标系来表示它,并写出其各顶点的坐
13、标.六、教学反思3.3.1 轴对称的坐标表示教学目标 1、知识与能力目标掌握点或图形的轴对称变换引起的点的坐标变化规律,能利用这种变化规律在平面直角坐标系中作出一个图形的轴对称图形2、过程与方法目标经历探索点或图形的轴对称变换引起的点的坐标变化的过程,培养学生的观察归纳能力运用数形结合的方法,把坐标与图形变换联系起来,体味几何图形的趣味性和数学内容的深刻性3、情感与态度目标通过主动探究,合作交流,培养学生的合作意识,体验成功的喜悦,获得数形结合的审美享受教学重点1、直角坐标系中关于x轴、y轴对称点的坐标变换规律2、利用坐标变换规律在平面直角坐标系中作一个图形的轴对称图形教学难点平面直角坐标系中
14、,关于直线x=m(或直线y=n)对称的点的坐标变换规律一、知识链接已知点B和直线m,作出点B关于直线m的对称点若建立平面直角坐标系,B的坐标是(5,6),分别求出它关于x轴和y轴对称点的坐标,初探关于坐标轴对称点的坐标关系二、自主学习在答题卡上画出下列已知点的对称点,并把坐标填入表格中, 归纳关于坐标轴对称的点的坐标变换规律已 知 点 A(2,4)B(5,5)C(4,2)D(0,0)关于x轴对称的点关于y轴对称的点 关于坐标轴对称的点的坐标变换规律:点(x,y)关于x轴对称的点的坐标为(x ,-y)点(x,y)关于y轴对称的点的坐标为(-x ,y)3、利用关于坐标轴对称的点的坐标变换规律,在平
15、面直角坐标系中作一个图形的轴对称图形可以先确定该图关键点的对称点的坐标,而后描点,连线三、合作探索1、请在答题卡(1)题上画出下列已知点的对称点,并把坐标填入表格中已 知 点(-2,3)(5,-2)关于直线x=1对称的点关于直线y=-1对称的点观察,思考,探索对称点的坐标之间的关系(为帮助学生进一步分析关系,加上2题). (1) (2)2、请在答题卡(2)题上画出下列已知点的对称点,并把坐标填入表格中已 知 点 A(4,5)B(-1,-3)C(-2,4)D(2,-4)E(3,0)关于直线x=1对称的点3、小组讨论,归纳关于直线x=m(或直线y=n)对称的点的坐标变换关系:点(a,b)关于直线x
16、=m对称的点的坐标为(2m-a,b);点(a,b)关于直线y=n对称的点的坐标为(a,2n-b)四、展示归纳1、用坐标表示轴对称的点的坐标变换规律:点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x ,y)点(a,b)关于直线x=m对称的点的坐标为(2m-a,b);点(a,b)关于直线y=n对称的点的坐标为(a,2n-b)五、课堂检测1、如图(1),正方形ABCD的中心为O,ADx轴,CDy轴,若点A的坐标为(1,1),说出点B、C、D的坐标(根据什么?) (1) (2)2、 如图(2),在平面直角坐标系xoy中,A(-1,6),B(-1,0),C(-
17、4,3),在图中作出ABC关于y轴对称图形 六、教学反思 3.3.2平移的坐标表示【学习目标】1、掌握坐标变化与图形平移的关系,能利用点的平移规律将图形进行平移;2、会根据图形上点的坐标的变化,来判定图形的移动过程【学习重点】掌握坐标变化与图形平移的关系【学习难点】利用坐标变化与图形平移的关系解决实际问题【学习过程】一、知识链接“在平面内,将一个图形沿某个方向移动一定的距离(这样的图形运动叫做平移, 平移不改变物体的 和 ,在上一章学过)”,这时又该如何来描述图形位置的变化呢?2、 自主学习预习课本本节内容三、合作探索 探索一:完成探究并归纳“图形平移与点的坐标变化”之间的关系(其中a、b为正
18、数)向右平移a个单位(1)左、右平移:向左平移a个单位原图形上的点(x,y) ( )原图形上的点(x,y) ( )向上平移b个单位(2)上、下平移:向下平移b个单位原图形上的点(x,y) ( )原图形上的点(x,y) ( )分别变为 , , . 探索二:思考并归纳“点的坐标变化与图形平移”之间的关系(其中a、b为正数)(x+a,y)(1)横坐标变化,纵坐标不变:(x-a,y)原图形上的点(x,y) 向 平移 个单位原图形上的点(x,y) 向 平移 个单位(x,y+b)(2)横坐标不变,纵坐标变化:(x,y-b)原图形上的点(x,y) 向 平移 个单位原图形上的点(x,y) 向 平移 个单位四、展示成果 1.在平面直角坐标系中,有一点P(-4,2),若将点P:(1)向左平移2个单位长度,所得点的坐标为_;(2)向右平移3个单位长度,所得点的坐标为_;(3)向下平移4个单位长度,所得点的坐标为_;(4)向上平移5个单位长度,所得点的坐标为_;2.已知A(1,4),B(-4,0),C(2,0). 将ABC向左平移三个单位后,点A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【培训课件】顾问式营销技术探讨
- 产后排尿困难的健康宣教
- 共点力作用下物体的平衡课件
- 孕期阴道炎的健康宣教
- 《论述类总复习》课件
- JJF(陕) 043-2020 非接触式视频引伸计校准规范
- JJF(黔) 80-2024 经皮黄疸测试仪校准规范
- 【大学课件】网络安全基础
- 社会实践活动丰富教研内容计划
- 财务道德在职业中的重要性计划
- 02S515排水检查井图集
- 2024-2030年中国Janus激酶(JAK)抑制剂行业市场发展趋势与前景展望战略分析报告
- 水稻育秧合同范本
- 2025高考语文步步高大一轮复习讲义教材文言文点线面答案精析
- 支气管镜的临床应用
- 《工程勘察设计收费标准》(2002年修订本)-工程设计收费标准2002修订版
- 2024-2030年中国眼部保健品行业市场发展趋势与前景展望战略分析报告
- 中国成人失眠诊断与治疗指南(2023版)解读
- 知道网课智慧《设计创新思维》测试答案
- JT-T-1210.1-2018公路沥青混合料用融冰雪材料第1部分:相变材料
- 解析德意志意识形态中的难解之谜生产关系概念与交往形式等术语的关系
评论
0/150
提交评论