版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、管管 理理 运运 筹筹 学学1第二章第二章线性规划的图解法线性规划的图解法 1 1问题的提出问题的提出 2 2图解法图解法 3 3图解法的灵敏度分析图解法的灵敏度分析管管 理理 运运 筹筹 学学2第二章第二章线性规划的图解法线性规划的图解法在管理中一些典型的线性规划应用在管理中一些典型的线性规划应用 合理利用线材问题:如何在保证生产的条件下,下料最少 配料问题:在原料供应量的限制下如何获取最大利润 投资问题:从投资项目中选取方案,使投资回报最大 产品生产计划:合理利用人力、物力、财力等,使获利最大 劳动力安排:用最少的劳动力来满足工作的需要 运输问题:如何制定调运方案,使总运费最小线性规划的组
2、成:线性规划的组成:目标函数 max f 或 min f约束条件 s.t. (subject to) 满足于决策变量 用符号来表示可控制的因素管管 理理 运运 筹筹 学学31 1问题的提出问题的提出例例1. 某工厂在计划期内要安排、两种产品的生产,已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位、产品才能使工厂获利最多?线性规划模型:线性规划模型: 目标函数:max z = 50 x1 + 100 x2 约束条件:s.t. x1 + x2 300 2 x1 + x2 400 x2 250 x1 , x2 0管管 理理 运运 筹筹 学学41
3、 1问题的提出问题的提出 建模过程建模过程1.理解要解决的问题,明确在什么条件下,要追求什么目标;2.定义决策变量( x1 ,x2 , ,xn ),每一组值表示一个方案;3.用决策变量的线性函数形式写出目标函数,确定最大化或最小化目标;4.用一组决策变量的等式或不等式表示解决问题过程中必须遵循的约束条件 一般形式一般形式目标函数: max (min) z = c1 x1 + c2 x2 + + cn xn 约束条件: s.t. a11 x1 + a12 x2 + + a1n xn ( =, )b1 a21 x1 + a22 x2 + + a2n xn ( =, )b2 am1 x1 + am2
4、 x2 + + amn xn ( =, )bm x1 ,x2 , ,xn 0 管管 理理 运运 筹筹 学学5例例1.目标函数: max z = 50 x1 + 100 x2 约束条件: s.t. x1 + x2 300 (A) 2 x1 + x2 400 (B) x2 250 (C) x1 0 (D) x2 0 (E)得到最优解: x1 = 50, x2 = 250 最优目标值 z = 275002图图 解解 法法 对于只有两个决策变量的线性规划问题,可以在平面直角坐标系上作图表示线性规划问题的有关概念,并求解。 下面通过例1详细讲解其方法:管管 理理 运运 筹筹 学学62图图 解解 法法 (
5、1)分别取决策变量X1, X2 为坐标向量建立直角坐标系。在直角坐标系里,图上任意一点的坐标代表了决策变量的一组值,例1的每个约束条件都代表一个半平面。x2x1X20X2=0 x2x1X10X1=0管管 理理 运运 筹筹 学学72图图 解解 法法(2)对每个不等式(约束条件),先取其等式在坐标系中作直线,然后确定不等式所决定的半平面。100200300100200300 x1+x2300 x1+x2=3001001002002x1+x24002x1+x2=400300200300400 x1x1x2x2管管 理理 运运 筹筹 学学82图图 解解 法法(3)把五个图合并成一个图,取各约束条件的公
6、共部分,如图2-1所示。100100 x2250 x2=250200300200300 x1x2x2=0 x1=0 x2=250 x1+x2=3002x1+x2=400图2-1x1x2管管 理理 运运 筹筹 学学92图图 解解 法法(4)目标函数z=50 x1+100 x2,当z取某一固定值时得到一条直线,直线上的每一点都具有相同的目标函数值,称之为“等值线”。平行移动等值线,当移动到B点时,z在可行域内实现了最大化。A,B,C,D,E是可行域的顶点,对有限个约束条件则其可行域的顶点也是有限的。x1x2z=20000=50 x1+100 x2图2-2z=27500=50 x1+100 x2z=
7、0=50 x1+100 x2z=10000=50 x1+100 x2CBADE管管 理理 运运 筹筹 学学102图图 解解 法法 线性规划的标准化内容之一:线性规划的标准化内容之一:引入松驰变量(含义是资源的剩余量) 例1 中引入 s1, s2, s3 模型化为 目标函数:max z = 50 x1 + 100 x2 + 0 s1 + 0 s2 + 0 s3 约束条件:s.t. x1 + x2 + s1 = 300 2 x1 + x2 + s2 = 400 x2 + s3 = 250 x1 , x2 , s1 , s2 , s3 0 对于最优解 x1 =50 x2 = 250 , s1 = 0
8、 s2 =50 s3 = 0 说明:生产50单位产品和250单位产品将消耗完所有可能的设备台时数及原料B,但对原料A则还剩余50千克。管管 理理 运运 筹筹 学学112图图 解解 法法 重要结论: 如果线性规划有最优解,则一定有一个可行域的顶点对应一个最优解; 无穷多个最优解。若将例1中的目标函数变为max z=50 x1+50 x2,则线段BC上的所有点都代表了最优解; 无界解。即可行域的范围延伸到无穷远,目标函数值可以无穷大或无穷小。一般来说,这说明模型有错,忽略了一些必要的约束条件; 无可行解。若在例1的数学模型中再增加一个约束条件4x1+3x21200,则可行域为空域,不存在满足约束条
9、件的解,当然也就不存在最优解了。管管 理理 运运 筹筹 学学图解法 无界解 线性规划存在无界解,即无最优解的情况。对下述线性规划问题: 约束条件: max z=x1+x2; x1-x2 1 -3x1+2x2 6 x1 0, x2 012管管 理理 运运 筹筹 学学图解法 无界解 用图解法求解结果,如图所示,可以看到,该问题可行域无界,目标函数值可以增大到无穷大,成为无界解,即为无最优解。13x1x2x2=0 x1=0图2-11234-1-21234-1z=0=x1+x2z=1=x1+x2z=3=x1+x2管管 理理 运运 筹筹 学学14进进 一一 步步 讨讨 论论 例例2 2 某公司由于生产需
10、要,共需要A,B两种原料至少350吨(A,B两种材料有一定替代性),其中A原料至少购进125吨。但由于A,B两种原料的规格不同,各自所需的加工时间也是不同的,加工每吨A原料需要2个小时,加工每吨B原料需要1小时,而公司总共有600个加工小时。又知道每吨A原料的价格为2万元,每吨B原料的价格为3万元,试问在满足生产需要的前提下,在公司加工能力的范围内,如何购买A,B两种原料,使得购进成本最低?管管 理理 运运 筹筹 学学15进进 一一 步步 讨讨 论论解:目标函数: min f = 2x1 + 3 x2 约束条件:s.t. x1 + x2 350 x1 125 2 x1 + x2 600 x1
11、, x2 0 采用图解法。如下图:得Q点坐标(250,100)为最优解。100200300 400 500 600100200300400600500 x1 =125x1+x2 =3502x1+3x2 =8002x1+3x2 =9002x1+x2 =6002x1+3x2 =1200 x1 x2 Q管管 理理 运运 筹筹 学学163图解法的灵敏度分析图解法的灵敏度分析线性规划的标准化线性规划的标准化 一般形式一般形式目标函数: max (min) z = c1 x1 + c2 x2 + + cn xn 约束条件: s.t. a11 x1 + a12 x2 + + a1n xn ( =, )b1
12、a21 x1 + a22 x2 + + a2n xn ( =, )b2 am1 x1 + am2 x2 + + amn xn ( =, )bm x1 ,x2 , ,xn 0 标准形式标准形式目标函数: max z = c1 x1 + c2 x2 + + cn xn 约束条件: s.t. a11 x1 + a12 x2 + + a1n xn = b1 a21 x1 + a22 x2 + + a2n xn = b2 am1 x1 + am2 x2 + + amn xn = bm x1 ,x2 , ,xn 0,bi 0管管 理理 运运 筹筹 学学173图解法的灵敏度分析图解法的灵敏度分析 可以看出,
13、线性规划的标准形式有如下四个特点:目标最大化;约束为等式;决策变量均非负;右端项非负。 对于各种非标准形式的线性规划问题,我们总可以通过以下变换,将其转化为标准形式:管管 理理 运运 筹筹 学学183图解法的灵敏度分析图解法的灵敏度分析1.极小化目标函数的问题: 设目标函数为 min f = c1x1 + c2x2 + + cnxn (可以)令 z -f , 则该极小化问题与下面的极大化问题有相同的最优解,即 max z = - c1x1 - c2x2 - - cnxn 但必须注意,尽管以上两个问题的最优解相同,但它们最优解的目标函数值却相差一个符号,即 min f - max z管管 理理
14、运运 筹筹 学学193图解法的灵敏度分析图解法的灵敏度分析2、约束条件不是等式的问题: 设约束条件为 ai1 x1+ai2 x2+ +ain xn bi 可以引进一个新的变量s ,使它等于约束右边与左边之差 s=bi(ai1 x1 + ai2 x2 + + ain xn )显然,s 也具有非负约束,即s0, 这时新的约束条件成为 ai1 x1+ai2 x2+ +ain xn+s = bi管管 理理 运运 筹筹 学学203图解法的灵敏度分析图解法的灵敏度分析 当约束条件为 ai1 x1+ai2 x2+ +ain xn bi 时, 类似地令 s=(ai1 x1+ai2 x2+ +ain xn)-
15、bi 显然,s 也具有非负约束,即s0,这时新的约束条件成为 ai1 x1+ai2 x2+ +ain xn-s = bi管管 理理 运运 筹筹 学学213图解法的灵敏度分析图解法的灵敏度分析为了使约束由不等式成为等式而引进的变量s,当不等式为“小于等于”时称为“松弛变量”;当不等式为“大于等于”时称为“剩余变量”。如果原问题中有若干个非等式约束,则将其转化为标准形式时,必须对各个约束引进不同的松弛变量或剩余变量。3.右端项有负值的问题: 在标准形式中,要求右端项必须每一个分量非负。当某一个右端项系数为负时,如 bi0,则把该等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2- -ai
16、n xn = -bi。管管 理理 运运 筹筹 学学223图解法的灵敏度分析图解法的灵敏度分析例:将以下线性规划问题转化为标准形式 min f = 2 x1 -3x2 + 4 x3 s.t. 3 x1 + 4x2 - 5 x3 6 2 x1 + x3 8 x1 + x2 + x3 = -9 x1 , x2 , x3 0 解:首先,将目标函数转换成极大化: 令 z= -f = -2x1+3x2-4x3 其次考虑约束,有2个不等式约束,引进松弛变量或剩余变量x4,x5 0。 第三个约束条件的右端值为负,在等式两边同时乘-1。管管 理理 运运 筹筹 学学233图解法的灵敏度分析图解法的灵敏度分析通过以
17、上变换,可以得到以下标准形式的线性规划问题: max z = - 2x1 + 3 x2 - 4x3 s.t. 3x1+4x2-5x3 +x4 = 6 2x1 +x3 -x5= 8 -x1 -x2 -x3 = 9 x1 ,x2 ,x3 ,x4 ,x5 0* 变量无符号限制的问题*: 在标准形式中,必须每一个变量均有非负约束。当某一个变量xj没有非负约束时,可以令 xj = xj- xj” 其中 xj0,xj”0 即用两个非负变量之差来表示一个无符号限制的变量,当然xj的符号取决于xj和xj”的大小。管管 理理 运运 筹筹 学学243图解法的灵敏度分析图解法的灵敏度分析 灵敏度分析灵敏度分析:建立
18、数学模型和求得最优解后,研究线性规划的一个或多个参数(系数)ci , aij , bj 变化时,对最优解产生的影响。3.1 目标函数中的系数目标函数中的系数 ci 的灵敏度分析的灵敏度分析 考虑例1的情况,ci 的变化只影响目标函数等值线的斜率,目标函数 z = 50 x1 + 100 x2 在 z = x2 (x2 = z 斜率为0 ) 到 z = x1 + x2 (x2 = -x1 + z 斜率为 -1 )之间时,原最优解 x1 = 50,x2 = 100 仍是最优解。 一般情况: z = c1 x1 + c2 x2 写成斜截式 x2 = - (c1 / c2 ) x1 + z / c2
19、目标函数等值线的斜率为 - (c1 / c2 ) , 当 -1 - (c1 / c2 ) 0 (*) 时,原最优解仍是最优解。管管 理理 运运 筹筹 学学253图解法的灵敏度分析图解法的灵敏度分析 假设产品的利润100元不变,即 c2 = 100,代到式(*)并整理得 0 c1 100 假设产品的利润 50 元不变,即 c1 = 50 ,代到式(*)并整理得 50 c2 假若产品、的利润均改变,则可直接用式(*)来判断。 假设产品、的利润分别为60元、55元,则 - 2 - (60 / 55) - 1 那么,最优解为 z = x1 + x2 和 z = 2 x1 + x2 的交点 x1 = 100,x2 = 200 。管管 理理 运运 筹筹 学学263图解法的灵敏度分析图解法的灵敏度分析 3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 约舍夫环课课程设计
- 综合课程设计作业
- 运功分析课程设计
- 大学生考证情况课程设计
- 画动物课程设计
- 2025年《开学第一课》学生观后感心得作(2篇)
- 2025年严抓细管求效益工作总结模版(三篇)
- nba合同递增规则
- 2024版施工方损害补偿合同样本版
- 2024旅游服务外包合同
- 子宫内膜癌业务查房课件
- 社会学概论课件
- 华为经营管理-华为的研发管理(6版)
- C及C++程序设计课件
- 带状疱疹护理查房
- 公路路基路面现场测试随机选点记录
- 平衡计分卡-化战略为行动
- 国家自然科学基金(NSFC)申请书样本
- 湖南省省级温室气体排放清单土地利用变化和林业部分
- 材料设备验收管理流程图
- 培训机构消防安全承诺书范文(通用5篇)
评论
0/150
提交评论