自动控制原理实验报告 3次硬件_第1页
自动控制原理实验报告 3次硬件_第2页
自动控制原理实验报告 3次硬件_第3页
自动控制原理实验报告 3次硬件_第4页
自动控制原理实验报告 3次硬件_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、自动控制原理实验报告(硬件部分)组 员:陈崇任 20111980 张 敏 20111989 陈东彦 20111982班 级:电气201102班第一次实验: 第三章 自动控制原理实验3.1 线性系统的时域分析3.1.1典型环节的模拟研究一. 实验目的1 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二典型环节的结构图及传递函数方 框 图传递函数比例(P)积分(I)比例积分(PI)比例微分(PD)惯性环节(T)比例积分微分(PID) 三实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各

2、项电路参数对典型环节动态特性的影响.。改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。1)观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。图3-1-1 典型比例环节模拟电路传递函数: ; 单位阶跃响应: 实验步骤:注:S ST用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT),作为系统的信

3、号输入(Ui);该信号为零输出时,将自动对模拟电路锁零。 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒(D1单元左显示)。 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V(D1单元右显示)。(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A5S4,S122B5S-ST1信号输入(Ui)B5(OUT)A5(H1)2示波器联接1档A6(OUT)B3(CH1)3B5(OUT)B3(CH2)(3)运行、观察、记录: 打开虚拟示波

4、器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0+4V阶跃),观测A5B输出端(Uo)的实际响应曲线Uo(t)见图3-1-2。示波器的截图详见虚拟示波器的使用。 图3-1-2 比例环节阶跃响应曲线图 图3-1-3 惯性环节阶跃响应曲线实验报告要求:按下表改变图3-1-1所示的被测系统比例系数,观测结果,填入实验报告。R0R1输入Ui比例系数K计算值测量值200K100K4V0.50.51200K4V11.0250K100K2V21.93200K1V44.06 R0=200K , R1=100K ,Ui=4v R0=200K , R1=200K ,Ui=4vR0=50K , R1=10

5、0K ,Ui=2vR0=50K , R1=200K ,Ui=1v2)观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-4所示。图3-1-4 典型惯性环节模拟电路传递函数: 单位阶跃响应:实验步骤:注:S ST用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT),作为系统的信号输入(Ui);该信号为零输出时,将自动对模拟电路锁零。 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒(D1单元左显示)。 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V(D1单元右显

6、示)。(2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下。1信号输入(Ui)B5(OUT)A5(H1)2示波器联接1档A5B(OUTB)B3(CH1)3B5(OUT)B3(CH2)(a)安置短路套 (b)测孔联线模块号跨接座号1A5S4,S6,S102B5S-ST(3)运行、观察、记录: 打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮时(0+4V阶跃),等待完整波形出来后,移动虚拟示波器横游标到输出稳态值0.632处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得惯性环节模拟电路时间常数T。A5B输出端响应曲线Uo(t)见图3

7、-1-3。示波器的截图详见虚拟示波器的使用。实验报告要求:按下表改变图3-1-4所示的被测系统时间常数及比例系数,观测结果,填入实验报告。R0R1C输入Ui比例系数K惯性常数T计算值测量值计算值测量值200K200K1u4V11.0150.20.222u11.0150.40.4150K100K1u2V22.0320.10.11200K1V44.0630.20.20 R0=200K , R1=200K ,Ui=4v, C=1u R0=200K , R1=200K ,Ui=4v, C=2u R0=50K , R1=100K ,Ui=2v, C=1u R0=50K , R1=200K ,Ui=1v,

8、 C=1u3)观察积分环节的阶跃响应曲线 典型积分环节模拟电路如图3-1-5所示。图3-1-5 典型积分环节模拟电路传递函数: 单位阶跃响应: 实验步骤:注:S ST用短路套短接!(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui);该信号为零输出时,将自动对模拟电路锁零。 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒(D1单元左显示)。 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 1V(D1单

9、元右显示)。(2)构造模拟电路:按图3-1-5安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线1信号输入(Ui)B5(OUT)A5(H1)2示波器联接1档A5B(OUTB)B3(CH1)3B5(OUT)B3(CH2)模块号跨接座号1A5S4,S102B5S-ST(3)运行、观察、记录: 打开虚拟示波器的界面,点击开始,等待完整波形出来后,点击停止,移动虚拟示波器横游标到0V处,再移动另一根横游标到V=1V(与输入相等)处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得积分环节模拟电路时间常数Ti。A5B 输出响应曲线Uo(t)见图3-1-6。示

10、波器的截图详见虚拟示波器的使用。 图3-1-6 积分环节响应曲线 图3-1-7 比例积分环节响应曲线实验报告要求:按下表改变图3-1-5所示的被测系统时间常数,观测结果,填入实验报告。R0C输入Ui积分常数Ti计算值测量值200K1u1V0.20.202u0.40.42100K1u0.10.102u0.20.20R0=200K , C=1u, Ui=1vR0=200K , C=2u, Ui=1vR0=100K , C=1u, Ui=1vR0=100K , C=2u, Ui=1v4)观察比例积分环节的阶跃响应曲线 典型比例积分环节模拟电路如图3-1-8所示.。图3-1-8 典型比例积分环节模拟电

11、路传递函数: 单位阶跃响应:实验步骤:注:S ST用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT),作为系统的信号输入(Ui);该信号为零输出时将自动对模拟电路锁零。 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波(矩形波指示灯亮)。量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒(D1单元左显示)。(注:为了使在积分电容上积分的电荷充分放掉,锁零时间应足够大,即矩形波的零输出宽度时间足够长! “量程选择”开关置于下档时,其零输出宽度恒保持为2秒!) 调节B5单元的“矩形波调幅”电位器使矩形波输出电压 = 1V(D1单元右显示)。(2)构造

12、模拟电路:按图3-1-8安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A5S4,S82B5S-ST1信号输入(Ui)B5(OUT)A5(H1)2示波器联接1档A5B(OUTB)B3(CH1)3B5(OUT)B3(CH2)(3)运行、观察、记录: 打开虚拟示波器的界面,点击开始,等待完整波形出来后,点击停止。移动虚拟示波器横游标到输入电压比例系数K处,再移动另一根横游标到(输入电压比例系数K2)处,得到与积分曲线的两个交点。再分别移动示波器两根纵游标到积分曲线的两个交点,量得积分环节模拟电路时间常数Ti。典型比例积分环节模拟电路A5B输出响应曲线Uo(t)见图3-

13、1-7 。示波器的截图详见虚拟示波器的使用。实验报告要求:按下表改变图3-1-8所示的被测系统时间常数及比例系数,观测结果,填入实验报告。R0R1C输入Ui比例系数K积分常数Ti计算值测量值计算值测量值200K200K1u1V11.130.20.222u10.890.40.51100K1u21.840.20.202u20.4R0=200K , R1=200K C=1u, Ui=1vR0=200K , R1=200K C=2u, Ui=1vR0=100K , R1=200K C=1u, Ui=1v第二次实验:3.1.2 二阶系统瞬态响应和稳定性一实验目的1. 了解和掌握典型二阶系统模拟电路的构成

14、方法及型二阶闭环系统的传递函数标准式。2. 研究型二阶闭环系统的结构参数-无阻尼振荡频率n、阻尼比对过渡过程的影响。3. 掌握欠阻尼型二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计算。4. 观察和分析型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp、tp值,并与理论计算值作比对。二实验原理及说明图3-1-13是典型型二阶单位反馈闭环系统。图3-1-13 典型型二阶单位反馈闭环系统型二阶系统的开环传递函数: (3-1-1)型二阶系统的闭环传递函数标准式: (3-1-2)自然频率(无阻尼振荡频率): 阻尼比: (3-1-3)有二阶闭环系统

15、模拟电路如图3-1-14所示。它由积分环节(A2单元)和惯性环节(A3单元)的构成,其积分时间常数Ti=R1*C1=1秒,惯性时间常数 T=R2*C2=0.1秒。图3-1-14 型二阶闭环系统模拟电路模拟电路的各环节参数代入式(3-1-1),该电路的开环传递函数为:模拟电路的开环传递函数代入式(3-1-2),该电路的闭环传递函数为:模拟电路的各环节参数代入式(3-1-3),阻尼比和开环增益K的关系式为:临界阻尼响应:=1,K=2.5,R=40k 欠阻尼响应:01,设R=70k,K=1.43=1.321 计算欠阻尼二阶闭环系统在阶跃信号输入时的动态指标Mp、tp、ts:(K=25、=0.316、

16、=15.8)超调量 : 峰值时间: 调节时间 :三实验内容及步骤1型二阶闭环系统模拟电路见图3-1-14,改变A3单元中输入电阻R来调整系统的开环增益K,从而改变系统的结构参数,观察阻尼比对该系统的过渡过程的影响。2改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K,填入实验报告。3改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp,峰值时间tp,填入实验报告,並画出阶跃响应曲线。实验步骤: 注:S ST用“短路套”短接!(1) 将函数发生器(B5)单元的矩形波输出作为系统输入R。(连续的正输出宽度足够大的阶跃信号) 在显示与功能选择(D1)单元中,通过波形选择按键选中矩

17、形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度3秒(D1单元左显示)。 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 3V(D1单元右显示)。(2)构造模拟电路:按图3-1-14安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A1S4,S82A2S2,S11,S123A3S8,S104A6S2,S65B5S-ST1信号输入r(t)B5(OUT) A1(H1)2运放级联A1(OUT)A2(H1)3运放级联A2A(OUTA)A3(H1)4负反馈A3(OUT)A1(H2)5运放级联A3(OUT)A6(H1)67跨接元件4K

18、、40K、70K元件库A11中直读式可变电阻跨接到A3(H1)和(IN)之间8示波器联接1档A6(OUT)B3(CH1)9B5(OUT)B3(CH2)(3)运行、观察、记录: 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的二阶典型系统瞬态响应和稳定性实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。也可选用普通示波器观测实验结果。 分别将(A11)中的直读式可变电阻调整到4K、40K、70K,等待完整波形出来后,点击停止,用示波器观察在三种增益K下,A6输出端C(t)的系统阶跃响应,其实际响应曲线见图3-1-15.。

19、(a)01过阻尼阶跃响应曲线图3-1-15 型二阶系统在三种情况下的阶跃响应曲线示波器的截图详见虚拟示波器的使用。四实验报告要求:按下表改变图3-1-13所示的实验被测系统,画出系统模拟电路图。调整输入矩形波宽度3秒,电压幅度 = 3V。 计算和观察被测对象的临界阻尼的增益K,填入实验报告。积分常数Ti惯性常数T增益K计算值10.1 100.2 50.3 3.30.50.1 50.2 2 画出阶跃响应曲线,测量超调量Mp,峰值时间tp填入实验报告。(计算值实验前必须计算出)增益K(A3)惯性常数T(A3)积分常数Ti(A2)自然频率n计算值阻尼比计算值超调量Mp(%)峰值时间tP计算值测量值计

20、算值测量值25(R=4)0.11 15.810.6344.4 26.3 0.256 0.210.2 11.18 0.4520.5 36.10.315 0.29 0.3 9.13 0.3728.6 43.00.370 0.352.5(R=40)0.10.57.07 1.40 27.30 0.200.2 11.18 0.81.52 4.880.74 0.6401.43(R=70) 8.46 1.180 1.950 0.30注:在另行构建实验被测系统时,要仔细观察实验被测系统中各环节的输出,不能有限幅现象(10V输出幅度10V),防止产生非线性失真,影响实验效果。例如:在图3-1-14的型二阶闭环系

21、统模拟电路中,把惯性环节和积分环节的位置互换(跨接元件4K),从理论上说,对系统输出应没有影响。实际上不然,这是由于在该被测系统的惯性环节的输出10V,而本实验箱的被测系统电源电压为12V,产生了限幅现象,影响了实验效果。R=4K ,T=0.1, Ti=1 R=4K ,T=0.2, Ti=1R=4K ,T=0.3, Ti=1 R=40K ,T=0.1, Ti=0.5 R=40K ,T=0.1, Ti=0.2 R=70K ,T=0.1, Ti=0.2第三次实验:3.2 线性控制系统的频域分析3.2.1 频率特性测试一实验目的1了解线性系统频率特性的基本概念。2了解和掌握对数幅频曲线和相频曲线(波

22、德图)的构造及绘制方法。二实验原理及说明 频域分析法是应用频率特性研究线性系统的一种经典方法。它以控制系统的频率特性作为数学模型,以波德图或其他图表作为分析工具,来研究和分析控制系统的动态性能与稳态性能。波德图又称对数频率特性曲线(包括对数幅频和相频两条曲线),由于方便实用,因此被广泛地应用于控制系统分析时的作图。对数频率特性曲线的横坐标统一为角频率,并按十倍频程(dec)对数分度,单位是弧度/秒rad/s。对数幅频特性曲线的纵坐标表示对数幅频特性的函数值,为均匀分度,单位是分贝dB。对数相频特性曲线的纵坐标表示相频特性的函数值,为均匀分度,单位是度。一阶惯性环节的传递函数:其幅频特性: 相频

23、特性:对数幅频特性定义为: 三实验内容及步骤被测系统是一阶惯性的模拟电路图见图3-2-1,观测被测系统的幅频特性和相频特性,填入实验报告,並在对数座标纸上画出幅频特性和相频特性曲线。图3-2-1 被测系统(一阶惯性)的模拟电路图实验步骤: (1)将函数发生器(B5)单元的正弦波输出作为系统输入。 在显示与功能选择(D1)单元中,通过波形选择按键选中正弦波(正弦波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器2”,使之正弦波频率为8Hz(D1单元右显示)。 调节B5单元的“正弦波调幅”电位器,使之正弦波振幅值输出为2V左右(D1单元左显示)。(2)构造模拟电路:按图3-2-1安置短路套及

24、测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A3S1,S7,S92A6S2,S61信号输入B5(SIN)A3(H1)2运放级联A3(OUT)A6(H1)3示波器联接1档B5(SIN)B3(CH1)4A6(OUT)B3(CH2)(3)运行、观察、记录: 运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应分析实验项目,选择时域分析,就会弹出虚拟示波器的界面,点击开始,用示波器观察波形,应避免系统进入非线性状态。点击停止键后,可拖动时间量程(在运行过程中,时间量程无法改变),以满足观察要求,频率特性的时域分析见图3-2-2,该图是在输入的正弦波信号频率为8Hz

25、,输入为2V时截出,其输入和输出的相位差为44度,增益为20lg(3/2.15)=+2.89dB。图3-2-2 正弦波信号频率为8Hz时的响应曲线示波器的截图详见虚拟示波器的使用。四实验报告要求:输入振幅为2V,按下表改变实验被测系统正弦波输入频率:观测幅频特性和相频特性,填入实验报告。並在对数座标纸上画出幅频特性、相频特性曲线。输入频率Hz幅频特性相频特性(度)计算值测量值计算值测量值40.0-0.82-0.52889042.1-0.86-0.53036444.4-0.9-0.931969思考题:把图3-2-6所示的二阶闭环系统作为被测系统,观测系统的闭环幅频特性和相频特性,填入实验报告。並

26、画出系统的闭环幅频特性、相频特性曲线。3.2.2 一阶惯性环节的频率特性曲线一实验目的1了解和掌握一阶惯性环节的对数幅频特性和相频特性,实频特性和虚频特性的计算。2了解和掌握一阶惯性环节的转折频率的计算,及惯性时间常数对转折频率的影响3了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。二实验原理及说明 频域分析法是应用频率特性研究线性系统的一种经典方法。它以控制系统的频率特性作为数学模型,以波德图或其他图表作为分析工具,来研究和分析控制系统的动态性能与稳态性能。1 波德图:波德图又称对数频率特性曲线(包括对数幅频和相频两条曲线),由于方便实用,因此被广泛地应用

27、于控制系统分析时的作图。对数频率特性曲线的横坐标统一为角频率,并按十倍频程(dec)对数分度,单位是弧度/秒rad/s。对数幅频特性曲线的纵坐标表示对数幅频特性的函数值,为均匀分度,单位是分贝dB。对数相频特性曲线的纵坐标表示相频特性的函数值,为均匀分度,单位是度。对数幅频特性定义为: (3-2-1)2极坐标图:极坐标图又称幅相频率特性曲线(简称幅相曲线),还称奈奎斯特图。其特点是把频率看成参变量,当从0时将频率特性的幅频和相频特性或实频和虚频特性同时表示在复数平面上。实频特性定义为: (3-2-2)虚频特性定义为: (3-2-3)三实验内容及步骤惯性环节的频率特性测试电路见图3-2-3,改变被测系统的各项电路参数,画出其系统模拟电路图,及频率特性曲线,並计算和测量其转折频率,填入实验报告。图3-2-3 惯性环节的频率特性测试电路图3-2-3电路的增益K=2,惯性时间常数 T=0.02秒,转折频率=1/T=50 rad/s。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。(2)构造模拟电路:按图3-2-3安置短路套及测孔联线,表如下。(a)安置短路套

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论