向量代数-复习课_第1页
向量代数-复习课_第2页
向量代数-复习课_第3页
向量代数-复习课_第4页
向量代数-复习课_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、空间解析几何与空间解析几何与 向量代数向量代数 复复 习习 课课一、主要内容一、主要内容(一)向量代数(一)向量代数(二)空间解析几何(二)空间解析几何向量的向量的线性运算线性运算向量的向量的表示法表示法向量积向量积数量积数量积混合积混合积向量的积向量的积向量概念向量概念(一)向量代数(一)向量代数1 1、向量的概念、向量的概念定义定义:既有大小又有方向的量称为向量既有大小又有方向的量称为向量.自由向量、自由向量、 相等向量、相等向量、 负向量、负向量、向径向径.重要概念重要概念:零向量、零向量、向量的模、向量的模、单位向量、单位向量、平行向量、平行向量、(1) 加法:加法:cba 2 2、向

2、量的线性运算、向量的线性运算dba ab(2) 减法:减法:cba dba (3) 向量与数的乘法:向量与数的乘法:设设 是是一一个个数数,向向量量a与与 的的乘乘积积a 规规定定为为, 0)1( a 与与a同同向向,|aa , 0)2( 0 a , 0)3( a 与与a反向,反向,|aa 向量的分解式:向量的分解式:,zyxaaaa .,轴上的投影轴上的投影分别为向量在分别为向量在其中其中zyxaaazyxkajaiaazyx 在三个坐标轴上的分向量:在三个坐标轴上的分向量:kajaiazyx,向量的坐标表示式:向量的坐标表示式:向量的坐标:向量的坐标:zyxaaa,3 3、向量的表示法、向

3、量的表示法向量的加减法、向量与数的乘积等的坐标表达式向量的加减法、向量与数的乘积等的坐标表达式,zyxaaaa ,zyxbbbb ,zzyyxxbabababa ,zzyyxxbabababa ,zyxaaaa kbajbaibazzyyxx)()()( kbajbaibazzyyxx)()()( kajaiazyx)()()( 非零向量非零向量 的的方向角方向角:a非零向量与三条坐标轴的正向的夹角称为方向角非零向量与三条坐标轴的正向的夹角称为方向角. . 、 、 ,0 ,0 .0 xyzo 1M 2M 向量的模与方向余弦的坐标表示式向量的模与方向余弦的坐标表示式xyzo 1M 2M 由图分析

4、可知:由图分析可知: cos|aax cos|aay cos|aaz 向量的方向余弦向量的方向余弦方向余弦通常用来表示向量的方向方向余弦通常用来表示向量的方向. .222|zyxaaaa PQR向量模长的坐标表示式向量模长的坐标表示式21212121RMQMPMMM 0222 zyxaaa当当 时,时,,cos222zyxxaaaa ,cos222zyxyaaaa .cos222zyxzaaaa 向量方向余弦的坐标表示式:向量方向余弦的坐标表示式:1coscoscos222 方向余弦的特征方向余弦的特征0a|aa .cos,cos,cos 特殊地:单位向量的方向余弦为特殊地:单位向量的方向余弦

5、为222|zyxaaaa 向量模长的坐标表示式向量模长的坐标表示式222coszyxxaaaa 222coszyxyaaaa 222coszyxzaaaa )1coscoscos(222 向量方向余弦的坐标表示式向量方向余弦的坐标表示式4 4、数量积、数量积 cos|baba 其其 中中 为为a与与b的的 夹夹 角角(点积、内积点积、内积)zzyyxxbabababa 数量积的坐标表达式数量积的坐标表达式ba 0 zzyyxxbababa222222coszyxzyxzzyyxxbbbaaabababa 两向量夹角余弦的坐标表示式两向量夹角余弦的坐标表示式5 5、向量积、向量积 sin|bac

6、 其其 中中 为为a与与b的的 夹夹 角角c的的方方向向既既垂垂直直于于a,又又垂垂直直于于b,指指向向符符合合右右手手系系.(叉积、外积叉积、外积)kbabajbabaibabaxyyxzxxzyzzy)()()( 向量积的坐标表达式向量积的坐标表达式ba zyxzyxbbbaaakjiba ba/zzyyxxbababa cbacba )(zyxzyxzyxcccbbbaaa 6 6、混合积、混合积例例1 1解:解:共共面面且且,使使,求求一一单单位位向向量量,已已知知bancnnkjickjbia,22,2000 ,0kzj yixn 设设由题设条件得:由题设条件得:10 ncn 00n

7、ab 020221222zyzyxzyx解得:解得:).323132(0kjin 解:解:设设向向量量21PP的的方方向向角角为为 、 、 ,3 ,4 , 1coscoscos222 .21cos ,21cos ,22cos .32,3 设设2P的的坐坐标标为为),(zyx,1cos x 21PP21 x21 , 2 x0cos y 21PP20 y22 , 2 y3cos z 21PP23 z, 2, 4 zz2P的坐标为的坐标为).2 , 2, 2(),4 , 2, 2(21 直直 线线曲面曲面曲线曲线平平 面面参数方程参数方程旋转曲面旋转曲面柱柱 面面二次曲面二次曲面一般方程一般方程参数

8、方程参数方程一般方程一般方程对称式方程对称式方程 点法式方程点法式方程一般方程一般方程空间直角坐标系空间直角坐标系(二)空间解析几何(二)空间解析几何x横轴横轴y纵轴纵轴z竖轴竖轴 定点定点o1 1、空间直角坐标系、空间直角坐标系空间的点空间的点有序数组有序数组),(zyxxyoz空空间间直直角角坐坐标标系系共有一个原点共有一个原点,三个坐标轴三个坐标轴,三个坐标面三个坐标面,八个卦限八个卦限. 21221221221zzyyxxMM 它们距离为它们距离为设设),(1111zyxM、),(2222zyxM为为空空间间两两点点两点间距离公式两点间距离公式:曲面方程的定义:曲面方程的定义:如如果果

9、曲曲面面S与与三三元元方方程程0),( zyxF有有下下述述关关系系:(1) 曲面曲面S上任一点的坐标都满足方程;上任一点的坐标都满足方程;那那 么么 , 方方 程程0),( zyxF就就 叫叫 做做 曲曲 面面S的的 方方 程程 , 而而曲曲 面面S就就 叫叫 做做 方方 程程 的的 图图 形形 .2 2、曲面、曲面(2) 不不在在曲曲面面S上上的的点点的的坐坐标标都都不不满满足足方方程程;研究空间曲面的两个基本问题:研究空间曲面的两个基本问题:(2)已知坐标间的关系式,研究曲面形状)已知坐标间的关系式,研究曲面形状.(1)已知曲面作为点的轨迹时,求曲面方程)已知曲面作为点的轨迹时,求曲面方

10、程.1 旋转曲面旋转曲面定义:以一条平面曲线绕其定义:以一条平面曲线绕其平面上的一条直线旋转一周平面上的一条直线旋转一周所成的曲面称之所成的曲面称之.这条定直线叫旋转曲面的这条定直线叫旋转曲面的轴轴.方程特点方程特点:0),()2(0),()1(00),(:2222 yzxfyLzyxfxLzyxfL方方程程为为轴轴旋旋转转所所成成的的旋旋转转曲曲面面绕绕曲曲线线方方程程为为轴轴旋旋转转所所成成的的旋旋转转曲曲面面绕绕曲曲线线设设有有平平面面曲曲线线(2)圆锥面)圆锥面222zyx (1)球面)球面(3)旋转双曲面)旋转双曲面1222222 czayax1222 zyx2 柱面柱面定义:定义:

11、平行于定直线并沿定曲线平行于定直线并沿定曲线C移动的直线移动的直线L所形成的曲面称之所形成的曲面称之.这条定曲线叫柱面的这条定曲线叫柱面的准线准线,动直线叫柱面,动直线叫柱面的的母线母线.从柱面方程看柱面的特征:从柱面方程看柱面的特征: 只只 含含yx ,而而 缺缺z的的 方方 程程0),( yxF, 在在空空 间间 直直 角角 坐坐 标标 系系 中中 表表 示示 母母 线线 平平 行行 于于z轴轴 的的 柱柱面面 , 其其 准准 线线 为为xoy面面 上上 曲曲 线线C.(1) 平面平面 xy (3) 抛物柱面抛物柱面 )0(22 ppyx(4) 椭圆柱面椭圆柱面 12222 byax(2)

12、 圆柱面圆柱面 222Ryx 3 二次曲面二次曲面定义定义: 三元二次方程所表示的曲面称为二次曲面三元二次方程所表示的曲面称为二次曲面.(1)椭球面)椭球面1222222 czbyaxzqypx 2222(2)椭圆抛物面)椭圆抛物面)(同号同号与与qpzqypx 2222(3)马鞍面)马鞍面)(同号同号与与qp(4)单叶双曲面)单叶双曲面1222222 czbyax(5)圆锥面)圆锥面222zyx 3 3、空间曲线、空间曲线 0),(0),(zyxGzyxF1 空间曲线的一般方程空间曲线的一般方程 )()()(tzztyytxx2 空间曲线的参数方程空间曲线的参数方程 22222)21()21

13、(1yxyxz 2sinsin2121cos21tztytx如图空间曲线如图空间曲线一般方程为一般方程为参数方程为参数方程为3 空间曲线在坐标面上的投影空间曲线在坐标面上的投影 0),(0),(zyxGzyxF消去变量消去变量z后得:后得:0),( yxH设空间曲线的一般方程:设空间曲线的一般方程: 00),(zyxH曲线在曲线在 面上的投影曲线为面上的投影曲线为xoy 00),(xzyR 00),(yzxT面上的投影曲线面上的投影曲线yoz面上的投影曲线面上的投影曲线xoz如图如图:投影曲线的研究过程投影曲线的研究过程.空间曲线空间曲线投影曲线投影曲线投影柱面投影柱面4 空间立体或曲面在坐标

14、面上的投影空间立体或曲面在坐标面上的投影空间立体空间立体曲面曲面4 4、平面、平面,CBAn ),(0000zyxMxyzon0MM1 平面的点法式方程平面的点法式方程0)()()(000 zzCyyBxxA2 平面的一般方程平面的一般方程0 DCzByAx1 czbyax3 平面的截距式方程平面的截距式方程xyzoabc0:11111 DzCyBxA0:22222 DzCyBxA4 平面的夹角平面的夹角222222212121212121|cosCBACBACCBBAA 5 两平面位置特征:两平面位置特征:21)1( 0212121 CCBBAA21)2( /212121CCBBAA 1 1

15、n2 2n 5 5、空间直线、空间直线0:11111 DzCyBxA0:22222 DzCyBxA 00:22221111DzCyBxADzCyBxAL1 空间直线的一般方程空间直线的一般方程xyzo1 2 LxyzosL0M M 3 空间直线的参数方程空间直线的参数方程pzznyymxx000 2 空间直线的对称式方程空间直线的对称式方程 ptzzntyymtxx000),(0000zyxM,pnms 直线直线:1L111111pzznyymxx 直线直线:2L222222pzznyymxx 22222221212121212121|),cos(pnmpnmppnnmmLL 两直线的夹角公式

16、两直线的夹角公式4 两直线的夹角两直线的夹角5 两直线的位置关系:两直线的位置关系:21)1(LL 0212121 ppnnmm21)2(LL/212121ppnnmm pzznyymxxL000: 0: DCzByAx6 直线与平面的夹角直线与平面的夹角222222|sinpnmCBACpBnAm 直线与平面的夹角公式直线与平面的夹角公式)20( 7 直线与平面的位置关系直线与平面的位置关系 L)1(pCnBmA L)2(/0 CpBnAm旋转曲面旋转曲面定义定义 以一条平面曲线绕其平面上的一条直线旋转一周以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面所成的曲面称为旋转曲面

17、. .这条定直线叫旋转曲面的这条定直线叫旋转曲面的轴轴xozy0),( zyf), 0(111zyM M),(zyxM设设1)1(zz (2)点点M到到z轴轴的的距距离离|122yyxd 旋转过程中的特征:旋转过程中的特征:如图如图将将 代入代入2211,yxyzz 0),(11 zyfd将将 代入代入2211,yxyzz 0),(11 zyf , 0,22 zyxfyoz坐坐标标面面上上的的已已知知曲曲线线0),( zyf绕绕z轴轴旋旋转转一一周周的的旋旋转转曲曲面面方方程程.得方程得方程同同理理:yoz坐坐标标面面上上的的已已知知曲曲线线0),( zyf绕绕y轴轴旋旋转转一一周周的的旋旋转转曲曲面面方方程程为为 . 0,22 zxyf例例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论