版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、6.1 分类加法计数原理与分步乘法计数原理(精讲)思维导图常见考法考点一 分类加法计数原理【例1】(2020上海浦东新华师大二附中高二期中)从集合中任意选择三个不同的数,使得这三个数组成等差数列,这样的等差数列有( )个A98B56C84D49【答案】A【解析】当公差为时,数列可以是:,共13种情况.当公差为时,数列可以是:,共11种情况.当公差为时,数列可以是:,共9种情况.当公差为时,数列可以是:,共7种情况.当公差为时,数列可以是:,共5种情况.当公差为时,数列可以是:,共3种情况.当公差为时,数列可以是:,共1种情况.总的情况是.又因为三个数成公差数列有两种情况,递增或递减,所以这样的
2、等差数列共有个.故选:A【解题思路】分类计数原理解题思路1.根据题目特点恰当选择一个分类标准2.分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复3.分类时除了不能交叉重复外,还不能有遗漏【一隅三反】1(2020重庆高二期末)完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有( )A5种B4种C9种D45种【答案】C【解析】会用第一种方法的有5个人,选1个人完成这项工作有5种选择;会用第二种方法的有4个人,选1个人完成这项工作有4种选择;两者相加一共有9种选择
3、,故选:C.2(2020陕西高二期末(理)李明自主创业种植有机蔬菜,并且为甲、乙、丙、丁四家超市提供配送服务,甲、乙、丙、丁四家超市分别需要每隔天、天、天、天去配送一次已知月日李明分别去了这四家超市配送,那么整个月他不用去配送的天数是( )ABCD【答案】B【解析】将月剩余的30天依次编号为1,2,330,因为甲、乙、丙、丁四家超市分别需要每隔天、天、天、天去配送一次,且月日李明分别去了这四家超市配送,所以李明每逢编号为3的倍数的那天要去甲超市配送,每逢编号为4的倍数的那天要去乙超市配送,每逢编号为6的倍数的那天要去丙超市配送,每逢编号为7的倍数的那天要去丁超市配送,则李明去甲超市的天数编号为
4、:3、6、9、12、15、18、21、24、27、30,共10天;李明去乙超市但不去甲超市的天数编号为:4、8、16、20、28,共5天;李明去丙超市但不去甲、乙超市的天数编号不存在,共0天;李明去丁超市但不去甲、乙、丙超市的天数编号为:7、14,共2天;所以李明需要配送的天数为,所以整个月李明不用去配送的天数是.故选:B.3(2020甘肃省会宁县第二中学高二期中(理)将编号1,2,3,4的小球放入编号为1,2,3的盒子中,要求不允许有空盒子,且球与盒子的号不能相同,则不同的放球方法有( )A16种B12种C9种D6种【答案】B【解析】由题意可知,这四个小球有两个小球放在一个盒子中,当四个小球
5、分组为如下情况时,放球方法有:当1与2号球放在同一盒子中时,有2种不同的放法;当1与3号球放在同一盒子中时,有2种不同的放法; 当1与4号球放在同一盒子中时,有2种不同的放法;当2与3号球放在同一盒子中时,有2种不同的放法;当2与4号球放在同一盒子中时,有2种不同的放法;当3与4号球放在同一盒子中时,有2种不同的放法;因此,不同的放球方法有12种,故选B.考点二 分步乘法计数原理【例2】(2020安徽合肥一中高二开学考试)某校为了庆祝新中国成立70周年举办文艺汇演,原节目单上有10个节目已经排好顺序,又有3个新节目需要加进去,不改变原来节目的顺序,则新节目单的排法有( )种A165B286C9
6、90D1716【答案】D【解析】第一步:10个节目空出11个位置,加入1个新来的节目,所以加入一个新节目有11种方法,第二步:从排好的11个节目空出的12个位置中,加入第2个新节目,有12种方法,第三步:从排好的12个节目空出的13个位置中,加入第3个新节目,有13种方法,所以由分步乘法计数原理得,加入3个新节目后的节目单的排法有(种).故选:D【方法总结】(1)利用分步计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连
7、续,逐步完成【一隅三反】1(2021南宁市银海三美学校高二月考)如图,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有多少种( )A280B180C96D60【答案】B【解析】按区域分四步:第1步,A区域有5种颜色可选;第2步,B区域有4种颜色可选;第3步,C区域有3种颜色可选;第4步,D区域也有3种颜色可选.由分步乘法计数原理,共有5433=180种不同的涂色方案. 选选:B.2(2020古丈县第一中学高二月考)7名旅客分别从3个不同的景区中选择一处游览,不同选法种数是( )ABCD【答案】B【解析】由题意,每名旅客可选
8、择方案有3种,因此7名旅客分别从3个不同的景区中选择一处游览,不同选法种数是.故选:B.3(2020湖南省长沙县第九中学高二期末)从集合中任取两个互不相等的数a,b组成复数,其中虚数有( )A10个B12个C16个D20个【答案】C【解析】a,b互不相等且为虚数,所有b只能从1,2,3,4中选一个有4种,a从剩余的4个选一个有4种,根据分步计数原理知虚数有4416(个)故选:C4(2020湖北车城高中高二月考)现有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A720种B1440种C2880种D4320种【答案】D【解析】根据题意分步完成任务:第一步:完成
9、3号区域:从6种颜色中选1种涂色,有6种不同方法;第二步:完成1号区域:从除去3号区域的1种颜色后剩下的5种颜色中选1种涂色,有5种不同方法;第三步:完成4号区域:从除去3、1号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法;第四步:完成2号区域:从除去3、1、4号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;第五步:完成5号区域:从除去1、2号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法;第六步:完成6号区域:从除去1、2、5号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;所以不同的涂色方法:种.故选:D.考点三 两个计数原理综合运用【例
10、3】(2021三亚华侨学校高二考试)某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动选2个班参加社会实践,要求这2个班不同年级,有_种不同的选法【答案】【解析】选2个班参加社会实践,这2个班不同年级,2个班为高一和高二各一个班有,2个班为高二和高三各一个班有,2个班为高三和高一各一个班有,所以不同的选法共有.故答案为:.【方法总结】两种计数原理选择思路分清要完成的事情是什么;分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;有无特殊条件的限制;检验是否有重复或遗漏【一隅三反】1(2021北京市鲁迅中学高二月考)如图,圆形
11、花坛分为部分,现在这部分种植花卉,要求每部分种植种,且相邻部分不能种植同一种花卉,现有种不同的花卉供选择,则不同的种植方案共有_种(用数字作答)【答案】260【解析】根据题意:当1,3相同时,2,4相同或不同两类,有:种,当1,3不相同时,2,4相同或不同两类,有:种,所以不同的种植方案共有种,故答案为:2602(2021山西)假设今天是4月23日,某市未来六天的空气质量预报情况如下图所示.该市有甲、乙、丙三人计划在未来六天(4月24日4月29日)内选择一天出游,甲只选择空气质量为优的一天出游,乙不选择周一出游,丙不选择明天出游,且甲与乙不选择同一天出游,则这三人出游的不同方法数为_.【答案】85【解析】若甲选择周一出游,则三人出游的不同方法数;若甲不选择周一出游,则三人出游的不同方法数.故这三人出游的不同方法数.故答案为:853(2021沙坪坝重庆八中)某学校需要把包含甲,乙,丙在内的6名教育专家安排到高一,高二,高三三个年级去听课,每个年级安排2名专家,已知甲必须安排到高一年级,乙和丙不能安排到同一年级,则安排方案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育用品采购合同审核
- 企业年会导演合作协议
- 员工发展与福利计划
- 广告传媒董事长聘用协议样本
- 财务报告保密协议管理办法
- 颈椎病的诊断与治理
- 水利工程招投标合同审查要点
- 售后服务管理评审修订制度
- 电子竞技公司聘用合同范本
- 初级消防安全课件
- 超星学习通尔雅《人工智能》答案
- 医院财务制度讲解课件
- 英语学科-家长会
- 案例研究设计与方法课件
- 《住院患者身体约束的护理》团体标准解读
- 六年级上数学试题-圆的周长-练习题-人教版 无答案
- 新人教统编版七年级上册历史 第13课 东汉的兴衰 教学课件
- 事业单位招聘人员体检表
- 对口计算机高职单招VB编程练习题及答案
- 量子力学选择题库(含答案)
- 共点力的平衡 课件 高中物理新人教版必修第一册(2022-2023学年)
评论
0/150
提交评论