关于负数在计算机中的表示方法讲述_第1页
关于负数在计算机中的表示方法讲述_第2页
关于负数在计算机中的表示方法讲述_第3页
关于负数在计算机中的表示方法讲述_第4页
关于负数在计算机中的表示方法讲述_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、负数的二进制编码越是基础的越是要掌握分类: 学习笔记2010-02-15 13:18330人阅读评论(0)收藏举报原码就是原来的表示方法反码是除符号位(最高位)外取反补码=反码+1以前学习二进制编码时,老师讲了一堆堆的什么原码啊反码啊补码啊xxxx转换啊,还有负数的表示方式啊 总是记不零清,终于从网上找到了一种比较好的讲解方式,保存再share一下,不过为了系统化讲解,又找来了一些编码的基础知识,如果只想看负数编码记忆法,请跳转到1.如果你不知道二进制怎么编码,请继续,否则请跳到21字节 = 8位,所以它能表示的最大数当然是8位都是1(既然2进制的数只能是0或1,如果是我们常见的10进制,那就

2、8位都为9,这样说,你该懂了?)1字节的二进制数中,最大的数:11111111。这个数的大小是多少呢?让我们来把它转换为十进制数。无论是什么进制,都是左边是高位,右边是低位。10进制是我们非常习惯的计数方式,第一位代表有几个1(即几个100),第二位代表有几个10(即几个101),第三位代表有几个100(即有几个102),用小学课本上的说法就是:个位上的数表示几个1,十位上的数表示向个10,百位上的数表示几个100同理可证,二进制数则是:第1位数表示几个1 (20),第2位数表示几个2(21),第3位数表示几个4(22),第4位数表示向个8(23)以前我们知道1个字节有8位,现在通过计算,我们

3、又得知:1个字节可以表达的最大的数是255,也就是说表示0255这256个数。那么两个字节(双字节数)呢?双字节共16位。 1111111111111111,这个数并不大,但长得有点眼晕,从现在起,我们要学会这样来表达二制数:1111 1111 1111 1111,即每4位隔一空格。双字节数最大值为:1 * 215 + 1 *214 + 1* 213 + 1 * 212 + 1 * 211 + 1 * 210 + + 1 * 22 + 1 * 21 + 1* 20 = 65535 很自然,我们可以想到,一种数据类型允许的最大值,和它的位数有关。具体的计算方法方法是,如果它有n位,那么最大值就是

4、:n位二进制数的最大值:1 * 2(n-1) + 1 * 2(n-2) + . + 1 * 202、理解有符号数和无符号数负数在计算机中如何表示呢?这一点,你可能听过两种不同的回答。一 种是教科书,它会告诉你:计算机用“补码”表示负数。可是有关“补码”的概念一说就得一节课,这一些我们需要在第6章中用一章的篇幅讲2进制的一切。再 者,用“补码”表示负数,其实是一种公式,公式的作用在于告诉你,想得到问题的答案,应该如何计算。却并没有告诉你为什么用这个公式就可以得到答案? -我就是被这个弄混淆的_另 一种是一些程序员告诉你的:用二进制数的最高位表示符号,最高位是0,表示正数,最高位是1,表示负数。这

5、种说法本身没错,可是如果没有下文,那么它就是 错的。至少它不能解释,为什么字符类型的-1用二进制表示是“1111 1111”(16进制为FF);而不是我们更能理解的“1000 0001”。(为什么说后者更好理解呢?因为既然说最高位是1时表示负数,那1000 0001不是正好是-1吗?-re!当初偶就是这么想的,so一直在脑中打架,越打越混淆,)。让我们从头说起。2.1、你自已决定是否需要有正负。就像我们必须决定某个量使用整数还是实数,使用多大的范围数一样,我们必须自已决定某个量是否需要正负。如果这个量不会有负值,那么我们可以定它为带正负的类型。在计算机中,可以区分正负的类型,称为有符类型,无正

6、负的类型(只有正值),称为无符类型。数值类型分为整型或实型,其中整型又分为无符类型或有符类型,而实型则只有有符类型。字符类型也分为有符和无符类型。比如有两个量,年龄和库存,我们可以定前者为无符的字符类型,后者定为有符的整数类型。2、使用二制数中的最高位表示正负。首先得知道最高位是哪一位?1个字节的类型,如字符类型,最高位是第7位,2个字节的数,最高位是第15位,4个字节的数,最高位是第31位。不同长度的数值类型,其最高位也就不同,但总是最左边的那位(如下示意)。字符类型固定是1个字节,所以最高位总是第7位。(红色为最高位)单字节数: 1111 1111双字节数: 1111 1111 1111

7、1111四字节数: 1111 1111 1111 1111 1111 1111 1111 1111当我们指定一个数量是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。当我们指定一个数量是有符号类型时,此时,最高数称为“符号位”。为1时,表示该数为负值,为0时表示为正值。3、无符号数和有符号数的范围区别。无符号数中,所有的位都用于直接表示该值的大小。有符号数中最高位用于表示正负,所以,当为正值时,该数的最大值就会变小。我们举一个字节的数值对比:无符号数: 1111 1111 值:255 1* 27 + 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 2

8、2 + 1* 21 + 1* 20有符号数: 0111 1111 值:127 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20 同样是一个字节,无符号数的最大值是255,而有符号数的最大值是127。原因是有符号数中的最高位被挪去表示符号了。并且,我们知道,最高位的权值也是最高的(对于1字节数来说是2的7次方=128),所以仅仅少于一位,最大值一下子减半。不过,有符号数的长处是它可以表示负数。因此,虽然它的在最大值缩水了,却在负值的方向出现了伸展。我们仍一个字节的数值对比:无符号数: 0 - 255有符号数: -128 - 0 - 127

9、同样是一个字节,无符号的最小值是 0 ,而有符号数的最小值是-128。所以二者能表达的不同的数值的个数都一样是256个。只不过前者表达的是0到255这256个数,后者表达的是-128到+127这256个数。一个有符号的数据类型的最小值是如何计算出来的呢?有符号的数据类型的最大值的计算方法完全和无符号一样,只不过它少了一个最高位(见第3点)。但在负值范围内,数值的计算方法不能直接使用1* 26 + 1* 25 的公式进行转换。在计算机中,负数除为最高位为1以外,还采用补码形式进行表达。所以在计算其值前,需要对补码进行还原。这里,先直观地看一眼补码的形式:以我们原有的数学经验,在10进制中:1 表

10、示正1,而加上负号:-1 表示和1相对的负值。那么,我们会很容易认为在2进制中(1个字节): 0000 0001 表示正1,则高位为1后:1000 0001应该表示-1。然而,事实上计算机中的规定有些相反,请看下表:二进制值(1字节)十进制值1000 0000红色的1代表负数蓝色的是补码(补码=反码+1)-1281000 0001蓝色部分代表多大的值?:将补码还原为原码-127想化成负数?:先减去1再按位取反1000 0010还原方法:补码-1再取反-1261000 0011-125.1111 1110-21111 1111-1首先我们看到,从-1到-128,其二进制的最高位都是1(表中标为红

11、色),正如我们前面的学。然后我们有些奇怪地发现,1000 0000 并没有拿来表示 -0;而1000 0001也不是拿来直观地表示-1。事实上,-1 用1111 1111来表示。怎么理解这个问题呢?先得问一句是-1大还是-128大?当 然是 -1 大。-1是最大的负整数。以此对应,计算机中无论是字符类型,或者是整数类型,也无论这个整数是几个字节。它都用全1来表示 -1。比如一个字节的数值中:1111 1111表示-1,那么,1111 1111 - 1 是什么呢?和现实中的计算结果完全一致。1111 1111 - 1 = 1111 1110,而1111 1110就是-2。这样一直减下去,当减到只

12、剩最高位用于表示符号的1以外,其它低位全为0时,就是最小的负值了,在一字节中,最小的负值是1000 0000,也就是-128。-小米批注:就是这部分蓝色的文字,让我终于能记清楚-1的编码方式了,汗。我们以-1为例,来看看不同字节数的整数中,如何表达-1这个数:字节数二进制值十进制值单字节数1111 1111红色表示负数蓝色部分的补码为值1-1负数:原码就是原来的表示方法、反码是除符号位(最高位)外取反、补码=反码+1双字节数1111 1111 1111 1111-1四字节数1111 1111 1111 1111 1111 1111 1111 1111-1可 能有同学这时会混了:为什么 1111

13、 1111 有时表示255,有时又表示-1?所以我再强调一下本节前面所说的第2点:你自已决定一个数是有符号还是无符号的。写程序时,指定一个量是有符号的,那么 当这个量的二进制各位上都是1时,它表示的数就是-1;相反,如果事选声明这个量是无符号的,此时它表示的就是该量允许的最大值,对于一个字节的数来说, 最大值就是255。ok 摘抄暂告段落,其实原文对于c的一些基础数据类型知识介绍的非常详细,8过太长了,摘到我需要的内容后就没全帖过来,如果有需要学习的同学,建议参见原文:)转自关键字: 二进制编码,负数二进制,二进制什么叫机器数?计算机为什么要采用补码?2007-09-09 14:24:25大中

14、小标签:教育杂谈在计算机内部,所有信息都是用二进制数串的形式表示的。整数通常都有正负之分,计算机中的整数分为无符号的和带符号的。无符号的整数用来表示0和正整数, 带符号的证书可以表示所有的整数。由于计算机中符号和数字一样,都必须用二进制数串来表示,因此,正负号也必须用0、1来表示。通常我们用最高的有效位来 表示数的符号(当用8位来表示一个整数时,第8位即为最高有效位,当用16位来表示一个整数时,第16位即为最高有效位。)0表示正号、1表示负号,这种 正负号数字化的机内表示形式就称为“机器数”,而相应的机器外部用正负号表示的数称为“真值”。将一个真值表示成二进制字串的机器数的过程就称为编码。无符

15、号数没有原码、反码和补码一说。只有带符号数才存在不同的编码方式。带符号整数有原码、反码、补码等几种编码方式。原码即直接将真值转换为其相应的二进制形式,而反码和补码是对原码进行某种转换编码方式。正整数的原 码、反码和补码都一样,负数的反码是对原码的除符号位外的其他位进行取反后的结果(取反即如果该位为0则变为1,而该位为1则变为0的操作)。而补码是先 求原码的反码,然后在反码的末尾位加1 后得到的结果,即补码是反码+1。IBM-PC中带符号整数都采用补码形式表示。(注意,只是带符号的整数采用补码存储表示的,浮点数另有其存储方式。)采用补码的原因或好处如下。采用补码运算具有如下两个特征:1)因为使用

16、补码可以将符号位和其他位统一处理,同时,减法也可以按加法来处理,即如果是补码表示的数,不管是加减法都直接用加法运算即可实现。2)两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。这样的运算有两个好处:1)使符号位能与有效值部分一起参加运算,从而简化运算规则。从而可以简化运算器的结构,提高运算速度;(减法运算可以用加法运算表示出来。)2)加法运算比减法运算更易于实现。使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计。下面深入分析上面所陈述的采用补码的原因(目的)。用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下:假设字长为8bits( 1

17、 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确.。因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码。反码的取值空间和原码相同且一一对应。下面是反码的减法运算:( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题。( 1 )10

18、 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的。于是就引入了补码概念。负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的。在补码中用(-128)代替了(-0),所以补码的表示范围为:(-1280127)共256个。注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:( 1 ) 10- ( 1 ) 10= ( 1 )10 + (

19、 -1 )10 = ( 0 )10(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确采用补码表示还有另外一个原因,那就是为了防止0的机器数有两个编码。原码和反码表示的0有两种形式+0和-0,而我们知道,+0和-0是相同的。这 样,8位的原码和反码表示的整数的范围就是-127+127(1111111101111111),而采用补码表示的时候,00000

20、000是+0, 即0;10000000不再是-0,而是-128,这样,补码表示的数的范围就是-128+127了,不但增加了一个数得表示范围,而且还保证了0编码 的唯一性。整数和0的原码、反码和补码都相同,下面介绍手工快速求负数补码的方法。这个方法在教材的第8页已经提到了,这里再写出来以便能引起大家的注意。其方法如下:先写出该负数的相反数(正数),再将该正数的二进制形式写出来,然后对这个二进制位串按位取反,即若是1则改为0,若是0则改为1,最后在末位加1。接下来的问题是,如何能将减法运算转换成加法运算呢?我们已经知道,原码表示简单直观,与真值转换容易。但如果用原码表示,其符号位不能参加运算。在计算机中用原码实现算术运算时,要取绝对值参加运算,符号 位单独处理,这对乘除运算是很容易实现的,但对加减运算是非常不方便的,如两个异号数相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论