版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、安徽省宿州市埇桥区闵贤中学2021-2021学年八年级上第一次段考数学试卷一、选择题:本大题共10个小题,每题4分,共40分在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1在ABC中,AB=6,AC=8,BC=10,那么该三角形为A锐角三角形B直角三角形C钝角三角形D等腰直角三角形2以下实数,0,中是无理数的有个A1B2C3D43 4的平方根是A2B2CD4在以下四组数中,不是勾股数的是A7,24,25B3,5,7C8,15,17D9,40,415以下计算正确的选项是AB+=CD6如图以数轴的单位长线段为边作一个正方形,以数
2、轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,那么点A表示的数是ABCD1.47直角三角形中一条直角边长为12cm,周长为30cm,那么这个三角形的面积是A20cm2B30cm2C60cm2D75cm28在ABC中,AB=15,AC=13,BC上的高AD长为12,那么ABC的面积为A84B24C24或84D42或849实数a,b在数轴上的位置如下图,那么+a的化简结果为A2a+bBbCbD2ab10如图是放在地面上的一个长方体盒子,其中AB=9,BB=5,BC=6,在线段AB的三等分点E靠近点A处有一只蚂蚁,BC中点F处有一米粒,那么蚂蚁沿长方体外表
3、爬到米粒处的最短距离为A10BC5+D6+二、填空题:本大题共8个小题,每题4分,共32分在每个小题中,请将答案填在题后的横线上.11假设是m的一个平方根,那么m+13的平方根是12a、b为两个连续的整数,且ab,那么a+b=13如果一个直角三角形的两边分别是5和12,那么这个直角三角形的第三边是14比拟大小:15假设是一个正整数,那么正整数m的最小值是16如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是17假设5+的小数局部是a,5的小数局部是b,那么ab+5b=18如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,直角CEF的面积为200,
4、那么BE的值为三、解答题:本大题共2个小题,每题7分,共14分解答时每题必须给出必要的演算过程或推理步骤.19计算:201在边长为1的正方形网格中,以AB为边作一个正方形2以C为顶点作一个面积为10的正方形四、解答题:本大题共4个小题,每题10分,共40分解答时每题必须给出必要的演算过程或推理步骤.21化简:1222如图,等边ABC的边长为6cm,AD是BC边上的中线1求AD的长度;2求ABC的面积23如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米1这个梯子底端离墙有多少米?2如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?24如图,折叠长方形一边AD,点
5、D落在BC边的点F处,BC=10cm,AB=8cm,求:1FC的长;2EF的长五、解答题:本大题共2个小题,每题12分,共24分解答时每题必须给出必要的演算过程或推理步骤.25阅读以下解题过程:;请答复以下问题:1观察上面的解题过程,化简:2利用上面提供的解法,请计算:26如图1,是两个全等的直角三角形直角边分别为a,b,斜边为c1用这样的两个三角形构造成如图2的图形,利用这个图形,证明:a2+b2=c2;2用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a=2,b=4时,求这个四边形的周长安徽省宿州市埇桥区闵贤中学2021-2021学年八年级上第一次段考数学试卷参考答案与试题解
6、析一、选择题:本大题共10个小题,每题4分,共40分在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1在ABC中,AB=6,AC=8,BC=10,那么该三角形为A锐角三角形B直角三角形C钝角三角形D等腰直角三角形考点:勾股定理的逆定理 分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可解答:解:在ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形应选B点评:此题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,三角形三边的长,
7、只要利用勾股定理的逆定理加以判断即可2以下实数,0,中是无理数的有个A1B2C3D4考点:无理数 分析:根据无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数,找出无理数的个数解答:解: =2,无理数有:, ,共2个应选B点评:此题考查了无理数的知识,解答此题的关键是掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数34的平方根是A2B2CD考点:平方根分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,那么x就是a的平方根,由此即可解决问题解答:解:22=4,4的平方根是2应选:A点评:此题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0
8、的平方根是0;负数没有平方根4在以下四组数中,不是勾股数的是A7,24,25B3,5,7C8,15,17D9,40,41考点:勾股数 分析:求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可解答:解:A、72+242=252,是勾股数的一组;B、32+5272,不是勾股数的一组;C、82+152=172,是勾股数的一组;D、92+402=412,是勾股数的一组应选:B点评:考查了勾股数,理解勾股数的定义,并能够熟练运用5以下计算正确的选项是AB+=CD考点:二次根式的混合运算 专题:计算题分析:根据二次根式的乘法法那么对A进行判断;根据二次根式的加减运算对
9、B、D进行判断;根据最简二次根式的定义对C进行判断解答:解:A、原式= = ,所以A选项正确;B、 与 不能合并,所以B选项错误;C、 为最简二次根式,所以C选项错误;D、 与 不能合并,所以D选项错误应选A点评:此题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式6如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,那么点A表示的数是ABCD1.4考点:实数与数轴 分析:先根据勾股定理求出OB的长,进而可得出结论解答:解:OB= = ,OA=OB= 点A在原点
10、的右边,点A表示的数是 应选B 点评:此题考查的是实数与数轴,熟知数轴上各点与全体实数是一一对应关系是解答此题的关键7直角三角形中一条直角边长为12cm,周长为30cm,那么这个三角形的面积是A20cm2B30cm2C60cm2D75cm2考点:勾股定理 分析:可设直角三角形中另一条直角边长为xcm,那么斜边为3012xcm,根据勾股定理列出关于x的方程,求得x的值,再根据三角形的面积公式列式计算即可求解解答:解:设直角三角形中另一条直角边长为xcm,那么斜边为3012xcm,依题意有122+x2=3012x2,解得x=5,1252=30cm2故这个三角形的面积是30cm2应选:B点评:考查了
11、勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方关键是方程思想的应用8在ABC中,AB=15,AC=13,BC上的高AD长为12,那么ABC的面积为A84B24C24或84D42或84考点:勾股定理 专题:分类讨论分析:由于高的位置是不确定的,所以应分情况进行讨论解答:解:1 ABC为锐角三角形,高AD在ABC内部BD= =9,CD= =5ABC的面积为 9+512=84;2 ABC为钝角三角形,高AD在ABC外部方法同1可得到BD=9,CD=5ABC的面积为 9512=24应选C点评:此题需注意当高的位置是不确定的时候,应分情况进行讨论9实数a,b在数轴上的位置如
12、下图,那么+a的化简结果为A2a+bBbCbD2ab考点:二次根式的性质与化简;实数与数轴 分析:由数轴得出b0a,|b|a|,原式化简为|a+b|+a,去掉绝对值符号得出ab+a,合并同类项即可解答:解:由数轴可知:b0a,|b|a|, +a=|a+b|+a=ab+a=b应选B点评:此题考查了二次根式的性质与化简和实数与数轴的应用,解此题的关键是根据数轴得出b0a和|b|a|,题目比拟典型,是一道比拟好的题目10如图是放在地面上的一个长方体盒子,其中AB=9,BB=5,BC=6,在线段AB的三等分点E靠近点A处有一只蚂蚁,BC中点F处有一米粒,那么蚂蚁沿长方体外表爬到米粒处的最短距离为A10
13、BC5+D6+考点:平面展开-最短路径问题 分析:利用平面展开图有两种情况,画出图形利用勾股定理求出EF的长即可解答:解:如图1,AB=9,BB=5,BC=6,在线段AB的三等分点E靠近点A处有一只蚂蚁,BC中点F处有一米粒,BE=6,BF=5+3=8,EF= =10;如图2,AB=9,BB=5,BC=6,在线段AB的三等分点E靠近点A处有一只蚂蚁,BC中点F处有一米粒,BE=6,EN=9,FN=5,EF= = 10 ,蚂蚁沿长方体外表爬到米粒处的最短距离为10应选A 点评:此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键二、填空题:本大题共8个小
14、题,每题4分,共32分在每个小题中,请将答案填在题后的横线上.11假设是m的一个平方根,那么m+13的平方根是4考点:平方根 分析:利用平方根的定义求出m的值,确定出m+13的值,即可求出平方根解答:解:根据题意得:m= 2=3,那么m+13=16的平方根为4故答案为:4点评:此题考查了平方根,熟练掌握平方根的定义是解此题的关键12a、b为两个连续的整数,且ab,那么a+b=11考点:估算无理数的大小 分析:根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案解答:解:a、b为两个连续的整数,且a b, ,a=6,b=5,a+b=11故答案为:11点评:此题主要考查了无理数
15、的大小,得出比拟无理数的方法是解决问题的关键13如果一个直角三角形的两边分别是5和12,那么这个直角三角形的第三边是13或考点:勾股定理 分析:此题要考虑两种情况:当要求的边是斜边时;当要求的边是直角边时解答:解:当要求的边是斜边时,那么有 =13;当要求的边是直角边时,那么有 = 点评:考查了勾股定理的运用,注意此类题的两种情况14比拟大小:考点:实数大小比拟 专题:计算题分析:将两数进行平方,然后比拟大小即可解答:解:32=18,22=20,1820,32故答案为:点评:此题考查了实数的大小比拟,注意运用平方法比拟两个正数的大小属于根底题15假设是一个正整数,那么正整数m的最小值是5考点:
16、二次根式的定义 专题:计算题分析:由于 是一个正整数,所以根据题意, m也是一个正整数,故可得出m的值解答:解: 是一个正整数,根据题意, 是一个最小的完全平方数,m=5,故答案为5点评:此题考查了二次根式的定义,正确找到被开方数是解题的关键16如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是考点:图形的剪拼;算术平方根 分析:由图可知每个小正方形的边长为1,面积为1,得出拼成的小正方形的面积为5,进一步开方得出拼成的正方形的边长为 解答:解:分割图形如下: ,故这个正方形的边长是: 故答案为: 点评:此题考查图形的剪拼和算术平方根,熟知“如果一个正数x的平方等于a
17、,即x2=a,那么这个正数x叫做a的算术平方根是解答此题的关键17假设5+的小数局部是a,5的小数局部是b,那么ab+5b=2考点:估算无理数的大小 分析:由于2 3,所以75+ 8,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数局部,小数局部让原数减去整数局部,代入求值即可解答:解:23,2+55+3+5,23,75+8,52553,253a=2,b=3;将a、b的值,代入可得ab+5b=2故答案为:2点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法是估算的一般方法,也是常用方法估算出整数局部后,小数局部=原数整
18、数局部18如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,直角CEF的面积为200,那么BE的值为12考点:正方形的性质 分析:由正方形的性质得出BC=CD,D=ABC=BCD=90,由ASA证明BCEDCF,得出CE=CF,CEF是等腰直角三角形,由CEF的面积求出CE,由正方形的性质求出BC,再由勾股定理求出BE即可解答:解:四边形ABCD是正方形,BC=CD,D=ABC=BCD=90,CBE=90,ECF=90,BCE=DCF,在BCE和DCF中, ,BCEDCFASA,CE=CF,CEF是等腰直角三角形,CEF的面积= CECF= CE2=200,CE=20,正
19、方形ABCD的面积为256,BC= =16,BE= = =12故答案为:12点评:此题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键三、解答题:本大题共2个小题,每题7分,共14分解答时每题必须给出必要的演算过程或推理步骤.19计算:考点:实数的运算;零指数幂;负整数指数幂 分析:分别进行二次根式的化简、负整数指数幂、零指数幂等运算,然后合并解答:解:原式=42+13=0点评:此题考查了实数的运算,涉及了二次根式的化简、负整数指数幂、零指数幂等知识,属于根底题201在边长为1的正方形网格中,以AB为边作一个正方
20、形2以C为顶点作一个面积为10的正方形考点:勾股定理 专题:作图题分析:1直接利用网格结合勾股定理得出正方形边长进而得出答案;2直接利用网格结合勾股定理得出正方形边长进而得出答案解答:解:1如下图:四边形ABCD即为所求;2如下图:四边形EGCF即为所求 点评:此题主要考查了勾股定理,根据网格求出正方形边长是解题关键四、解答题:本大题共4个小题,每题10分,共40分解答时每题必须给出必要的演算过程或推理步骤.21化简:12考点:二次根式的混合运算 专题:计算题分析:1先计算二次根式的乘法运算,然后化简后合并即可;2先根据二次根式的除法法那么和平方差公式计算,然后合并即可解答:解:1原式=+2=
21、3+2=5;2原式=31=32=1点评:此题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式22如图,等边ABC的边长为6cm,AD是BC边上的中线1求AD的长度;2求ABC的面积考点:等边三角形的性质 分析:1证明BD=CD=3,ADBC;运用正切函数求出AD的长2直接运用三角形的面积公式,求出面积,即可解决问题解答:解:1ABC是等边三角形,且边长为6,AB=AC=BC=6,B=60;AD是BC边上的中线,BD=CD=3;ADBC;tan60= ,AD=3cm2ABC的面积=BCAD=63=9cm2即ABC的面积为9cm2 点评:该题主要
22、考查了等边三角形的性质及其应用问题;解题的关键是灵活运用等边三角形的性质,科学求解论证23如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米1这个梯子底端离墙有多少米?2如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?考点:勾股定理的应用 分析:1由题意得a=24米,c=25米,根据勾股定理a2+b2=c2,可求出梯子底端离墙有多远2由题意得此时a=20米,c=25米,由勾股定理可得出此时的b,继而能和1的b进行比拟解答:解:1由题意得此时a=24米,c=25米,根据a2+b2=c2,可求b=7米;2不是设滑动后梯子的底端到墙的距离为b米,得方程,b2+2442=252,解得b=15,所以梯子向后滑动了8米综合得:如果梯子的顶端下滑了4米,那么梯子的底部在水平方向不是滑4米 点评:此题考查勾股定理的应用,有一定难度,注意两问线段的变化24如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:1FC的长;2EF的长考点:矩形的性质;翻折变换折叠问题专题:应用题分析:1由于ADE翻折得到AEF,所以可得AF=AD,那么在RtABF中,第一问可求解;2由于EF=DE,可设EF的长为x,进而在RtEFC中,利用勾股定理求解直角三角形即可解答:解:1由题意可得,AF=AD=10cm,在RtABF中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版双子女离婚合同模板版B版
- 2024年股东权益受让协议书:股权受让合同
- 2024台州城市绿化工程施工合同3篇
- 油分离器课程设计
- 画敦煌壁画课程设计
- 小学科学电池课程设计
- 爱我中华课程设计
- 2024年清水台建设劳务分包协议
- 2024-2025学年人教部编版五年级上语文寒假作业(五)
- 电子课表课程设计
- 《广联达培训教程》课件
- 扬州育才小学2023-2024六年级数学上册期末复习试卷(一)及答案
- 函数的单调性说课课件-2023-2024学年高一上学期数学人教A版(2019)必修第一册
- 浙江省温州市2022-2023学年五年级上学期语文期末试卷(含答案)3
- 软件系统实施与质量保障方案
- UV激光切割机市场需求分析报告
- 装修工程竣工验收报告模板模板
- 篮球馆受伤免责协议
- 神经生物学复习知识点
- 高一班主任上学期工作总结
- 信息经济学重点难点
评论
0/150
提交评论