222平面与平面平行的判定_第1页
222平面与平面平行的判定_第2页
222平面与平面平行的判定_第3页
222平面与平面平行的判定_第4页
222平面与平面平行的判定_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.2 2.2.2 平面与平面平面与平面平行的判定平行的判定 平面外一条直线与此平面内的一条直平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行线平行,则该直线与此平面平行(2 2)直线与平面平行的判定定理:)直线与平面平行的判定定理:(1 1)定义法;)定义法;ba/abaab线线平行线线平行线面平行线面平行1.1. 到现在为止到现在为止, ,我们一共学习过几种判断直线我们一共学习过几种判断直线与平面平行的方法呢与平面平行的方法呢? ?(1 1)平行)平行(2 2)相交)相交 怎样判定平面与平面平行呢?怎样判定平面与平面平行呢?2.2. 平面与平面有几种位置关系?分别是什么?平

2、面与平面有几种位置关系?分别是什么?生活中有没有平面与平面平行的例子呢生活中有没有平面与平面平行的例子呢?(1)(1)三角板或课本的一条边所在直线与三角板或课本的一条边所在直线与桌面平行,这个三角板或课本所在平桌面平行,这个三角板或课本所在平面与桌面平行吗?面与桌面平行吗?(2)(2)三角板或课本的两条边所在直线分三角板或课本的两条边所在直线分别与桌面平行,情况又如何呢?别与桌面平行,情况又如何呢?教室的天花板与地面给人平行的感觉,教室的天花板与地面给人平行的感觉,前后两块黑板也是平行的。前后两块黑板也是平行的。当三角板的两条边所在直线分别当三角板的两条边所在直线分别与地面平行时与地面平行时,

3、 ,这个三角板所在这个三角板所在平面与地面平行。平面与地面平行。 ()平面)平面 内有一条直线与平内有一条直线与平面面 平行,平行, , 平行吗?平行吗?()平面()平面 内有两条直线与平内有两条直线与平面面 平行,平行, , 平行吗?平行吗? 如果一个平面如果一个平面内内有两条有两条相交相交直线都直线都平行平行于另一个平面,那么这两个平面平行于另一个平面,那么这两个平面平行 两个平面平行的判定定理:两个平面平行的判定定理:线不在多,重在相交线不在多,重在相交符号表示:符号表示:, 图形表示:图形表示:abP判断下列命题是否正确,并说明理由判断下列命题是否正确,并说明理由(1)若平面)若平面

4、内的两条直线分别与平面内的两条直线分别与平面 平行,则平行,则 与与 平行;平行;(2)若平面)若平面 内有无数条直线分别与平面内有无数条直线分别与平面 平行,则平行,则 与与 平行;平行;(3)平行于同一直线的两个平面平行;)平行于同一直线的两个平面平行;(4)两个平面分别经过两条平行直线,这两个平面平)两个平面分别经过两条平行直线,这两个平面平 行;行;(5)过已知平面外一条直线,必能作出与已知平面平)过已知平面外一条直线,必能作出与已知平面平 行的平面行的平面例例1:已知正方体:已知正方体ABCD-A1B1C1D1,求证:平,求证:平面面AB1D1/平面平面C1BD证明:因为证明:因为A

5、BCDABCDA A1 1B B1 1C C1 1D D1 1为正方体,为正方体,所以所以D D1 1C C1 1AA1 1B B1 1,D D1 1C C1 1A A1 1B B1 1又又ABAABA1 1B B1 1,ABABA A1 1B B1 1,DD1 1C C1 1ABAB,D D1 1C C1 1ABAB,四边形四边形D D1 1C C1 1BABA是平行四边形,是平行四边形,DD1 1ACAC1 1B B,又又D D1 1A A 平面平面C C1 1BD,BD,CB CB 平面平面C C1 1BD.BD.由直线与平面平行的判定由直线与平面平行的判定, ,可知可知同理同理 D D

6、1 1B B1 1平面平面C C1 1BD,BD,又又 D D1 1ADAD1 1B B1 1=D=D1 1, ,所以,平面所以,平面ABAB1 1D D1 1平面平面C C1 1BDBD。D1A平面平面C1BD,bPcda符号语言:符号语言:,a c b d abP变式变式:在正方体在正方体ABCD-A1B1C1D1中,中,若若 M、N、E、F分别是棱分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面的中点,求证:平面AMN/平面平面EFDB。ABCA1B1C1D1DMNEF提示:提示:,AMDFANBEANAMA第一步:在一个平面内找出两条相交直线;第一步:在一个平面内找出两条相交直线;第二步:证明两条相交直线分别平行于另一个平第二步:证明两条相交直线分别平行于另一个平面。面。第三步:利用判定定理得出结论。第三步:利用判定定理得出结论。练一练练一练, ,巩固新知巩固新知:P58:P58练习练习1,2,31,2,3题题1、如图:三棱锥、如图:三棱锥P-ABC, D,E,F分别是棱分别是棱PA,PB,PC中点,中点,求证:平面求证:平面DEF平面平面ABC。PDEFABC2、如图,、如图,B为为ACD所在平面外一点,所在平面外一点,M,N,G分别为分别为ABC,ABD, BCD的重的重心,求证:平面心,求证:平面MNG平面平面ACD。BACDNMG小结:小结:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论