版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、想一想想一想P59x5 .13200500 xx5 .13200500 xx5 .132005005 . 2想一想想一想P59xx5 .132005005 . 225. 95 .9112想一想想一想P59 想一想想一想 某果园有某果园有100100棵橙子树棵橙子树, ,每一棵树平均结每一棵树平均结600600个橙子个橙子. .现准备多种一些橙子树以提高产量现准备多种一些橙子树以提高产量, ,但但是如果多种树是如果多种树, ,那么树之间的距离和每一棵树所那么树之间的距离和每一棵树所接受的阳光就会减少接受的阳光就会减少. .根据经验估计根据经验估计, ,每多种一每多种一棵树棵树, ,平均每棵树就会
2、少结平均每棵树就会少结5 5个橙子个橙子. . 想一想想一想 想一想想一想60420604556048060495605006049560480604556042060375y=-5x+100 x+60000, 想一想想一想.605001052x想一想想一想P59xxy56001006000010052xx6037560455604806049560500604956048060455604206037560420 数学真奇妙数学真奇妙得时当,60400y想一想想一想P59.60400605001052x随堂练习随堂练习P60 做一做做一做为为1m1m处达到距处达到距水水面最大高面最大高2.2
3、52.25m. m. 做一做做一做25. 212 xyO 做一做做一做25. 212 xyO 做一做做一做25. 212 xyO 做一做做一做 做一做做一做1967297112xy数学化OAB 做一做做一做1967297112xy数学化OAB 做一做做一做1967297112xy数学化OAB 做一做做一做 由此可知由此可知, ,如果不计其它因素如果不计其它因素, ,那那么水流的最大高度应达到约么水流的最大高度应达到约3.72m. .w(1) 设矩形的一边设矩形的一边AB=xm,那么那么AD边的长度如何表示?边的长度如何表示?w(2)设矩形的面积为设矩形的面积为ym2,当当x取何值取何值时时,y
4、的值最大的值最大?最大值是多少最大值是多少?何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上. .M40m30mABCDw(1)设矩形的一边设矩形的一边AB=xm,那么那么AD边的长度如何表示?边的长度如何表示?w(2)设矩形的面积为设矩形的面积为ym2,当当x取何值取何值时时,y的值最大的值最大?最大值是多少最大值是多少?w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两
5、直角边上. .ABCDMN .3043,1:xbbmAD易得设解40m30m xxxxxby3043304322.30020432x.30044,202:2abacyabx最大值时当或用公式xmbmw(1)如果设矩形的一边如果设矩形的一边AD=xcm,那那么么AB边的长度如何表示?边的长度如何表示?w(2)设矩形的面积为设矩形的面积为ym2,当当x取何值取何值时时,y的值最大的值最大?最大值是多少最大值是多少?何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上. .40cm
6、30cmbcmxcm .4034,1:xbbcmAB易得设解 xxxxxby4034403422.30015342x.30044,152:2abacyabx最大值时当或用公式ABCDMNw(1)设矩形的一边设矩形的一边BC=xm,那么那么AB边的长度如何表示?边的长度如何表示?w(2)设矩形的面积为设矩形的面积为ym2,当当x取何值取何值时时,y的值最大的值最大?最大值是多少最大值是多少?w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中点其中点A A和点和点D D分别在两直角边上分别在两直角边上,BC,BC在斜边上在斜边上. .ABCDMN
7、P40m30mxmbm .24,501:mPHmMN由勾股定理得解 xxxxxby24251224251222.3002525122x.30044,252:2abacyabx最大值时当或用公式.242512,xbbmAB易得设HGw1.理解问题理解问题;“二次函数应用” 的思路 w回顾回顾“最大利润最大利润”和和“最大面积最大面积”解决问题的过解决问题的过程,你能总结一下解决此类问题的程,你能总结一下解决此类问题的基本思路基本思路吗?与吗?与同伴交流同伴交流. .w2.分析问题中的变量和常量分析问题中的变量和常量,以及它们之间的关系以及它们之间的关系;w3.用数学的方式表示出它们之间的关系用数
8、学的方式表示出它们之间的关系;w4.运用数学知识求解运用数学知识求解;w5.检验结果的合理性检验结果的合理性, 给出问题的解答给出问题的解答. 用用4848米长的竹篱笆围建一矩形养鸡场米长的竹篱笆围建一矩形养鸡场, ,养养鸡场一面用砖砌成鸡场一面用砖砌成, ,另三面用竹篱笆围成另三面用竹篱笆围成, ,并并且在与砖墙相对的一面开且在与砖墙相对的一面开2 2米宽的门米宽的门( (不用篱不用篱笆笆),),问问养鸡场的边长为多少米时养鸡场的边长为多少米时,养鸡场占地养鸡场占地面积最大面积最大?最大面积是多少最大面积是多少?2my ym m2 2xmxm 正方形正方形ABCDABCD边长边长5cm,5c
9、m,等腰三角形等腰三角形PQRPQR中中,PQ=PR=5cm,PQ=PR=5cm,QR=8cm,QR=8cm,点点D D、C C、Q Q、R R在同一直线在同一直线l l上,当上,当C C、Q Q两两点重合时,等腰点重合时,等腰PQRPQR以以1cm/s1cm/s的速度沿直线的速度沿直线l l向向左方向开始匀速运动,左方向开始匀速运动,tsts后正方形与等腰三角形后正方形与等腰三角形重合部分面积为重合部分面积为ScmScm2 2,解答下列问题:解答下列问题:(1)(1)当当t=3st=3s时,求时,求S S的值;的值;(2)(2)当当t=3st=3s时,求时,求S S的值;的值;(3)(3)当当5st8s5st8s时,求时,求S S与与t t的函数关系式,并求的函数关系式,并求S S的最大值。的最大值。M MABCDPQRl本节课我们进一步学习了用二次函数知识解决本节课我们进一步学习了用二次函数知识解决最大面积问题,增强了应用数学知识的意识,最大面积问题,增强
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025服装连锁加盟合同样本
- 2025海上运输合同模板书
- 二零二五年度车辆转让与道路救援服务合同3篇
- 二零二五年度股权投资公司股东合作协议3篇
- 二零二五年度文化产业发展全新期权合同3篇
- 2025年度养羊产业人才培养与交流合作协议3篇
- 二零二五年度生态保护公益合作合同3篇
- 2025年度虚拟现实合伙人股权分配与内容开发合同3篇
- 二零二五年度生态农业用地农村房屋买卖合同协议书
- 2025年度农村自建房包工与智能安防系统安装合同
- 3、心电图检查质量控制(操作标准化)要求
- 肾病科肾病综合征诊疗规范2023版
- 高考作文模拟写作训练:一个熟悉的劳动者
- 电商税收合规问题
- 铁路行车规章
- 污水处理厂有毒有害气体检测记录表
- 马克思主义与社会科学方法论课后思考题答案全
- 针灸推拿习题库+参考答案
- 浅析岩溶地区工程地质勘察手段及应用
- 2023-2024学年六年级上期末数学考试试卷附答案解析
- 罗伊模式个案护理
评论
0/150
提交评论