等差数列教学设计公开课_第1页
等差数列教学设计公开课_第2页
等差数列教学设计公开课_第3页
等差数列教学设计公开课_第4页
等差数列教学设计公开课_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、无为二中公开课教学设计课题等差数列执教人:汪桂霞 班级:高一( 10)班 时间:(星期二)下午第一节高一数学必修5等差数列第一课时一、教学目标(一)知识与技能目标1理解等差数列的定义及等差中项的定义2. 掌握等差数列的通项公式及推广后的通项公式3灵活运用等差数列,熟练掌握知三求一的解题技巧(二)过程与方法目标1. 培养学生观察能力2. 进一步提高学生推理、归纳能力3. 培养学生合作探究的能力,灵活应用知识的能力(三)情感态度与价值观目标1. 体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神;2. 渗透函数、方程、化归的数学思想;3. 培养学生数学的应用意识,参与意识和创新意识。

2、二、教学重难点(一)重点1、等差数列概念的理解与掌握;2、等差数列通项公式的推导与应用。(二)难点1、等差数列的应用及其证明三、教学过程(一)背景问题,创设情景上节课我们共同学习了数列的定义及给出数列的两种方法一一通项公式和递推公式。这两个公式 从不同的角度反映了数列的特点。下面请同学们观察两个表格的数据并进行填空。思考问题(一):在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星,请问你能预测出下 次人类观测哈雷彗星的时间吗1682,1758,1834,1910,1986,(2062)特点:后一次观测时间比前一次观测时间增加了76年我们把这些数据写成数列的形式:1682,1758,18

3、34,1910,1986,2062.思考问题(二):通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表填写处空格处的信息吗高度h(km)12345679温度t( )28152(-11)(-24)特点:高度每增加一千米,温度就降低度。我们把表格中的数据写成数列的形式:28,15,2,-24学生活动(1 ):学生观察下列三个数列具有怎样的共同特征:(1)1682, 1758, 1834, 1910, 1986 , 2062.(2) 28,15,2,-24.(3)1,1,1,1,1,1,1,1,1,1.共同特征:1.后一项与它的前一项的差等于一个定常数。2.这个常

4、数可以为正为负,还可以为零。(二)新知概念,例题讲解1等差数列的定义:,那么我们就称这个数如果一个数列从 第2项起,它的每一项与它的前一项的差 都等于同一个常数 列为等差数列.要点:(1)从第二项起;(2) an an 1 c(n2,c为常数)或是an 1 anc(n 1)(3)同一常数c。2公差:这个常数叫做等差数列的公差,公差通常用“ d ”来表示请同学们大声说出上例三个等差数列的公差为多少(1)d=76d=d=0例1下列数列是等差数列吗为什么(1)1,3, 5, 7, 9, 2, 4, 6, 8, 10 5, 5, 5, 5, 5, 5,(3) 4,7,10,13,16,19,20,23

5、例2数列3n-5是等差数列吗如果是,请给以证明;如果不是,请说明理由。3等差数列的通项公式学生活动(2):你能根据规律填空吗(1) 1, 4, 7, 10, 13, 16,(),()(2)你能求出(1)中的a20吗a24 a1 37 a? 3 a1 23答案:a410 a3 3 a1 33归纳得:32019 3 58等差数列通项公式的推导过程:探索、猜想、证明如果一个数列a1, a2, a3, a4,an是等差数列,它的公差 为d,那么老师引导过程:a2a1d即:a2a1da3a2d即:a3a2 d a1 2da4a3d即:a4a3 da13d由此可得:ana(n1)d(n 2)当n=1时,等

6、式也是成立,因而等差数列的通项公式ana1 (n 1)d(n n*)学生活动(3):请同学们思考:你还能找到证明等差数列通项公式的方法吗同学(一):a2 a1 da3 a2 da4 a 3 dan an 1 d上述式子左右两边分别相加得: an a1 (n 1)d,当n=1时也成立。整理得:an ai (n 1)d学生(三):因为 an(anani)(anian2).(a3a2)(a2ajai又 an an 1 d(n 2)所以有: an ai (n i)d教师小结:大部分学生用不完全归纳法,通过个别同学补充叠加法与拆项法,从而得到等差数列 an的通项公式为:an ai (n 1)d(n2),

7、其中ai是这个数列的首项,d是公差。4. 例题讲解(i)类型:在等差数列通项公式中,有四个量,ai,d,an, n,知道其中的任意三个量,就可以求出另一个量,即知三求一 .( 2)等差数列的函数意义:等差数列由一次函数中某些特殊的点组成。趁热打铁练一练:活动问题:等差数列中ai =i,d=2,数列的通项公式是什么(an=2n-i)那么要求等差数列的通项公式只需求什么(ai和d)学生活动( 4):同学自己编出已知等差数列的首项和公差求通项公式的问题并解决。通过学生自己亲自尝试、体验,才能深刻理解等差数列的定义及通项公式,对学困生来讲,这样才能打好基础,这样安排即符合教学论中的巩固性原则,也符合素

8、质教育理论中面向全体的基本要求。例3:求等差数列8, 5, 2的第20项。导析:由 ai=8, d=5-8=-3, n=20 得,a2o=8+ (20-i )x(-3) =-49例是不是等差数列-5, -9, -i3的项如果是,是第几项导析:由 ai5,d9 ( 5)4得数列通项公式为: an5 4(n i)=-4n-i由题意可知,本题是要回答是否存在正整数n,使得-40仁-4n-i成立,解之得n=iOO,即-40i是这个数列的第 i00 项。变式训练:如果已知等差数列中任意两项,能不能求出an呢学生:举例:在等差数列 an中,已知a5=10, ai2=31,求an。解:ai +4d=10|a

9、i +11d=31解得 a1=-2 , d=3,贝V an=3n-5教师:此解法是利用数学的函数与方程的思想,函数与方程的思想是重要的数学思想方法之一,应熟 练掌握。问:由a5=a1 +4d , a12=a1 +11d能够有什么启示生:a12=a1 +11d=a5+ ( 12-5)d,于是有an=am+ (n-m) d,(等差数列通项公式的推广公式)上题可先求出 d=3,那么 an= a5+ (n-5) d= a12+ (n-12)d=3n-5例5.在等差数列an中(1)右 a5970, a80112,求玄仙解:由等差数列推广的通项公式得:a80 a59 (80 59)d 21d 42d 2a

10、101 a80 21d 154(2)若apq,aqp,求ap qap aqp q d q p解: d 1则有:ap q ap p q p d 0ap q 0若 a1223, a42143, an 263,求n解:a42a1230d 120 d 4又ana12n 1 d 23 n 1 d 263n 61(三) 形成检测,反馈回授1、求等差数列3,乙11,的第4项与第10项。2、 100是不是等差数列2, 9, 16,的项如果是,是第几项如果不是,说明理由。3、-20是不是等差数列 0, ,-7,的项如果是,是第几项如果不是,说明理由。4、 已知 a4=10, a7=19,求 a1 与 d。5、已知 a3=9, a9=3,求 a12(四) 课时小结,反思巩固学生活动5:这节课你们学到了什么归纳概教师鼓励学生积极回答,答不完整的没有关系,其它同学补充。以此培养学生的口头表达能力,括能力。并用多媒体把学生的归纳用一张表展示出来。生:(1)等差数列定义:即 an an 1 d (n 2)或 an+1- an = d (n N*)(2)等差数列通项公式:ana1(n 1)d (n N*)推导出公式:anam (n m)d(3)等差数列通项公式的应用:知三求一(五) 知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论