数学建模淋雨模型_第1页
数学建模淋雨模型_第2页
数学建模淋雨模型_第3页
数学建模淋雨模型_第4页
数学建模淋雨模型_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数 学模型讨论是否跑得越快,淋雨量越少。将人体简化成一个长方体,高a=1.5m (颈部以下),宽b=0.5m, J7-c=0.2m, 设跑步的距离d= 1000m,跑步的最大速度vm=5m/s,雨速u=4m/s,降雨量3 =2cm/h,及跑步速度为v,按以下步骤进行讨论”:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全 程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为 0,如图1.建立总淋雨量与速度v及参数a, b, c, d, u, 3, 0之间的关系, 问

2、速度v多大,总淋雨里最少。计算0=0, 0 =30的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角 为a,如图2 建立总淋雨量与速度v及参数a, b, c, d, u, 3, a之间的关系, 问速度v多大,总淋雨量最小。计算a =30的总淋雨量(说明:题目中所涉及 的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑(的影响),并解释结果的 实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位 面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。可得:淋雨

3、量(V)二降雨量(3)X人体淋雨面积(S) X淋浴时间(t)时间(t)二跑步距离(d)十人跑步速度(V)由得: 淋雨量(V) =G)XSXd/v三、模型假设(1 )、将人体简化成一个长方体,高a=1.5m (颈部以下),宽b=0.5m,厚c=0.2m. 设跑步距离d= 1000m,跑步最大速度vm=5m/s,雨速u =4m/s,降雨量w=2cm/h,记 跑步速度为V;(2) 、假设降雨量到一定时间时,应为定值;(3) 、此人在雨中跑步应为直线跑步;(4) 、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失 的水量,因为它可以直观的表示降雨量的多少;四、模型求解:(一) 、模型【建

4、立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S = 2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=co XSXd/vco =2cnVh=2X 10 2/3600 (m/s)将相关数据代入模型中,可解得:S = 2.2 (m2)V = 0. 00244446 (cm3 )=2. 44446 (L)(二) 、模型建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为0.,则淋 雨量只有两部分:顶部淋雨量和前部淋雨量.(如图1)设雨从迎面吹来时与人体夹角为&,且0 9(u sin& +v)/u(d/v)即:V2 = ab“ 6?(u sin& +v)/(u

5、 v)(2) 、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量,且与v 无关,所以顶部单位时间单位面积淋雨量为(UCOS&),顶部面积为(C),淋雨时间 为(6/V),于是顶部淋雨量为:Vi = bcscos&/vIII可算得总淋雨量:V = Vi +V2 = bcsdcos&/v+abds(usin& + v)/(u v)代入数据求得:/ _ cos& + 75sin& + l875v1800-v由V (v)函数可知:总淋雨量(V)与人跑步的速度(v)以及雨线与人的夹角(&)两者有关。对函数V (v)求导,得:7 _ cos& + 7.5sin&(1800 -v)2-显然:V0,

6、所以V为V的减函数,V随V增大而减小。因此,速度v=vm=5in/s,总淋雨量最小。(I)当0=0,代入数据,解得:V=0.0011527778 (m3 ) 1.153 (L)(II)当0=30。,代入数据,解得:V=0.0014025(n?戶 1.403 (L)(三)、模型1【1建立及求解:若雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为a则淋 雨量只有两部分:顶部淋雨量和后部淋雨量.(如图2)设雨从背部吹来时与人体夹角为& ,且0 a 90 ,建立a, b, c, d, u, a , e之间的关系为:(1)、先考虑顶部淋雨量:当雨从背面吹来,而对于人顶部的淋雨量Vi ,它与

7、 模型中一样,雨速在垂直方向只有向下的分量,同理可得:Vi = b c s cos a ( / v) = b c e d coso/v(2)、后部淋雨量:人相对于雨的水平速度为:u sin a-v, v u sinaco (it sina-v)/u , v u sina 总淋雨量最小,且 V=0.0002405 (n? ) =0.2405(L)可得人背部淋雨量为:而总淋雨量:V=Vi+ V3u u as mu s -v u sin a从而有:V = bcQcosa/v + a bde(“ sina-v)/ii,V = bcQ J-cosa/v + abde(v-usina)/ii,v u si

8、na化简式得:V = bd力(ccosa + dsina)/v-a/w, v u sin a代入相关数据化简得:V = (0.2cosa +1 5sina)/ v - 0.375/ 360,V = (0.2cosa -1.5sina)/v + 0.375/ 360,v u sina由V (v)函数可知:总淋雨量(V)与人跑步的速度(v)以及雨线与人的夹角 (&)两者有关。(I )、当 vSusina时,且 0 a 0 对式求导,易知Vu sin a时,且0 a 90 ,对式求导,解得:e l5sina-02cosaV= (,180.v)2(i)、 l5sin a 0.2 cos a 0 时,E

9、P : tan a 0 时,即:tan a 2/15,即 V、0;从而推出,总淋雨量(V)随着速度(V)的增加而增加,所以,当速度(v)取最小, B|J v=u sin a总淋雨量最小。当 a =30 , tan a 2/15 ,由模型分析的,当 v=u sin a =4X 1/2=2 (m/s)五、结果分析:(1)在该模型中考虑到雨的方向问题,这个模型跟模型二相似,将模型二与模型三综合起来 跟实际的生活就差不多很相似了。由这三个模型可以得岀在一泄的速度下人跑的越快淋雨量 就越少。(2)若雨迎面吹来时,跑得越快越好(3)若雨从背面吹来时,分为两种情况:当tan a c/a时,跑步速度v=u sin ci时V最小;当tan a c/a时,跑得越快越好。但是该模型只是考虑雨线方向与人的跑步方向在同一平而内,若是雨线方向与人的跑步方向不 在同一平面内建立坐标系上,对于这种情况,我们认为在本质和考虑问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论