版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、青,取之于蓝而青于蓝;冰,水为之而寒于水初三年级上册数学教案新人教版 【导语】教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。以下是我为您整理的初三年级上册数学教案新人教版,供大家查阅。 【篇一】 第1章反比例函数 1.1反比例函数 教学目标 【知识与技能】 理解反比例函数的概念,根据实际问题能列出反比例函数关系式. 【过程与方法】 经历从实际问题抽象出反比例函数的探索过程,发展学生
2、的抽象思维能力. 【情感态度】 培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值. 【教学重点】 理解反比例函数的概念,能根据已知条件写出函数解析式. 【教学难点】 能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想. 教学过程 一、情景导入,初步认知 1复习小学已学过的反比例关系,例如: (1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数) (2)当矩形面积一定时,长a和宽b成反比例,即abs(s是常数) 2、电流i、电阻r、电压u之间满足关系式uir,当u=220v时,请你用含r的代数式表示i吗? 【教学说明】对相关知识的复习,为
3、本节课的学习打下基础. 二、思考探究,获取新知 探究1:反比例函数的概念 (1)一群选手在进行全程为3000米的*比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式. (2)利用(1)的关系式完成下表: (3)随着时间t的变化,平均速度v发生了怎样的变化? (4)平均速度v是所用时间t的函数吗?为什么? (5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点? 【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数. 【教学说明】先
4、让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t0. 【教学说明】教师组织学生讨论,提问学生,师生互动 三、运用新知,深化理解 1.见教材p3例题. 2.下列函数关系中,哪些是反比例函数? (1)已知平行四边形的面积是1
5、2cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系; (2)压强p一定时,压力f与受力面积s的关系; (3)功是常数w时,力f与物体在力的方向上通过的距离s的函数关系 (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式 分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k0)所以此题必须先写出函数解析式,后解答 解: (1)a=12/h,是反比例函数; (2)fps,是正比例函数; (3)f=w/s,是反比例函数; (4)y=m/x,是反比例函数 3.当m为何值时,函数y=是反比例函数,并求出其函数解析式分析
6、:由反比例函数的定义易求出m的值解:由反比例函数的定义可知:2m21,m=3/2所以反比例函数的解析式为y= 4.当质量一定时,二氧化碳的体积v与密度成反比例.且v=5m3时,=198kgm3 (1)求p与v的函数关系式,并指出自变量的取值范围. (2)求v=9m3时,二氧化碳的密度. 解:略 5.已知yy1y2,y1与x成正比例,y2与x2成反比例,且x2与x3时,y的值都等于19求y与x间的函数关系式 分析:y1与x成正比例,则y1k1x,y2与x2成反比例,则y2=k2x2,又由yy1y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式 解:因为y1与x成正比
7、例,所以y1k1x;因为y2与x2成反比例,所以y2=,而yy1y2,所以y=k1x+,当x2与x3时,y的值都等于19 【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结 先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业 布置作业:教材“习题1.1”中第1、3、5题. 教学反思 学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习. 【篇二】 1.2反比例函数的图象与性质 第1课时反比例函数的图象与性质(1) 教学目标 【知识与技能】 1.会用
8、描点法画反比例函数图象;2.理解反比例函数的性质. 【过程与方法】 观察、比较、合作、交流、探索. 【情感态度】 通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质. 【教学重点】 画反比例函数的图象,理解反比例函数的性质. 【教学难点】 理解反比例函数的性质,并能灵活应用. 教学过程 一、情景导入,初步认知 你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢? 【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质. 二、思考探究,获取新知 探究1:反比例函数图象的画法画出反比例函数y=的图象分析画出函数图
9、象一般分为列表、描点、连线三个步骤. (1)列表:取自变量x的哪些值? x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值. (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(6,1)、(3,2)、(2,3)等 (3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支这两个分支合起来,就是反比例函数的图象 思考: (1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律? (2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题: (1)函数图形的两个分支分别位于哪些象限? (2)在每一象限内,函数值y随自变量x的变化是如何变化的? 【归纳结论】一般地,当k0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小. 探究3:反比例函数y=的图象可以引导学生采用多种方式进行自主探索活动: (1)可以用画反比例函数y=的图象的方式与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省淮南市潘集区2024-2025学年八年级上学期期中考试英语试题(含答案无听力原文及音频)
- 机动三轮车相关行业投资规划报告范本
- 化妆品原料相关行业投资方案范本
- 电池材料用化学品行业相关投资计划提议
- 离合器分离轴承行业相关投资计划提议
- 脑梗塞的抗凝治疗指南
- 【初中地理】气温和降水(第2课时)课件-2024-2025学年湘教版地理七年级上册
- 重症护理小组年终总结
- 在XXXX年党建引领企业高质量发展创新实践推进会上的讲话范文
- 物联网与公安工作
- 计算机网络考试重点整理
- 分子生物学DNA重组与转座
- 水泥搅拌桩机械进场安装验收记录表
- 生命生态安全
- 高一物理的必修的一期中考试试卷解析告
- 人教PEP五年级上册英语课件 Unit 4 Part B 第二课时
- 网络通信类visio图库
- 四年级英语上册Unit4第四课时教案人教PEP标准版
- 九大类危险品英文解释与图标
- 小学科学(16年级)课程标准解读
- 尼龙青岛交流
评论
0/150
提交评论