中国股市的买卖价差成分_第1页
中国股市的买卖价差成分_第2页
中国股市的买卖价差成分_第3页
中国股市的买卖价差成分_第4页
中国股市的买卖价差成分_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中国股市的买卖价差成分霍 红 王庆石(东北财经大学数学与数量经济学院)【摘要】本文基于市场微观结构理论,采用hs模型分解了上证50指数成分股票的买卖价差成分。通过对每分钟的分笔交易数据的实证分析,我们发现上海股市的交易价差约为0.065%,在不考虑交易相关时,买卖价差的指令处理成本和逆选择成本分别为29%和71%,而在考虑交易相关之后,买卖价差分解为指令处理成本、逆选择成本和指令持续成本,它们对买卖价差的贡献度分别为11%,40%和49%,而且交易反转概率低于0.5。此外,我们还发现上海股市中高价股或高交易量股票的逆选择成本最小。关键词 交易价差 逆选择成本 交易反转概率 交易指示中图分类号

2、f830 文献标识码 athe component of bid-ask spread in china stock markethuo hong wang qing-shiabstract: based on market microstructure theory, this paper analyzes the component of bid-ask spread of the component stocks that compose the shanghai 50 index. by empirical analysis to every trade data in one min

3、ute, we find in shanghai stock market, the traded spread is about 0.065%. without considering the correlation in trade, the proportion of adverse selection cost order process cost in spread is 29% and 71%, respectively. but when we consider the correlation in trade, the spread is decomposed into ord

4、er process cost, adverse selection cost and order persistence cost, and account for 11%, 40% and 49% of the spread respectively, and the probability that the trade is reversed is less than 0.5. further more, we also find adverse selection cost is smallest for stock with high price or high volume. ke

5、y words: traded spread; adverse selection cost; trade-reversed probability; trade indicator作者简介:1. 霍红(1978-),女,讲师,研究方向:资本市场统计与分析。 通讯地址:辽宁 大连 东北财经大学数学与数量经济学院(116025) e-mail: hhong_136 2. 王庆石(1961-),男,教授,博导,研究方向:资本市场统计与分析 通讯地址:辽宁 大连 东北财经大学国际商学院(116025) e-mail: wqingshi 中国股市的买卖价差成分霍 红 王庆石(东北财经大学数学与数量经济

6、学院)【摘要】本文基于市场微观结构理论,采用hs模型分解了上证50指数成分股票的买卖价差成分。通过对每分钟的分笔交易数据的实证分析,我们发现上海股市的交易价差约为0.065%,在不考虑交易相关时,买卖价差的指令处理成本和逆选择成本分别为29%和71%,而在考虑交易相关之后,买卖价差分解为指令处理成本、逆选择成本和指令持续成本,它们对买卖价差的贡献度分别为11%,40%和49%,而且交易反转概率低于0.5。此外,我们还发现上海股市中高价股或高交易量股票的逆选择成本最小。关键词 交易价差 逆选择成本 交易反转概率 交易指示中图分类号 f830 文献标识码 abid-ask spread and i

7、ts component in china stock markethuo hong wang qing-shiabstract: based on market microstructure theory, this paper analyzes the component of bid-ask spread of the component stocks that compose the shanghai 50 index. by empirical analysis to every trade data in one minute, we find in shanghai stock

8、market, the traded spread is about 0.065%. without considering the correlation in trade, the proportion of adverse selection cost order process cost in spread is 29% and 71%, respectively. but when we consider the correlation in trade, the spread is decomposed into order process cost, adverse select

9、ion cost and order persistence cost, and account for 11%, 40% and 49% of the spread respectively, and the probability that the trade is reversed is less than 0.5. further more, we also find adverse selection cost is smallest for stock with high price or high volume. key words: traded spread; adverse

10、 selection cost; trade-reversed probability; trade indicator一、引 言现代金融学关于资产价格行为的研究包括两个方面:一是资产的(长期)均衡价格的决定,如资本资产定价模型、套利定价模型和期权定价模型等;二是资产的(短期)价格波动行为的研究,主要考虑资本市场的微观结构因素对资产价格行为的影响,而其中一个重要的方面就是买卖价差的存在及其成份。直接地,买卖价差定义为卖出报价和买入报价之间的差异。根据市场微观结构理论,买卖价差是必然存在的,而且反映了三个交易成本成分,即指令处理成本、存货持有成本和逆选择成本。现有文献对买卖价差成分的研究主要基于

11、报价驱动市场,研究的模型可以归纳为两类:协方差模型和交易指示模型。前者的代表研究如roll(1984),choi,salandro和shastri(1988),george,kaul和nimalendran(1991)和stoll(1989)等。交易指示模型最先由glosten和harris(1988)研究,但当时他们没有可得的报价数据来直接估计模型。lin, sanger和 booth(1995)以及madhavan, richardson, 和roomans (1996) 也属于这类模型,国内的雷觉铭和曾勇(2006)就采用mrr模型分析了上海股市的买卖价差成分,韩冬等(2006)、王志强

12、和陈培昆(2006)等则采用lsb模型对中国股市的买卖价差成分进行了分解与分析。而huang和stoll (1997)(以下简称hs模型)给出了这类模型的一般形式。国内对买卖价差的研究主要涉及买卖价差的变化模式、影响因素、成分分解以及与流动性的关系。如杨之曙(2000)、孙培源和施东晖(2002)、屈文洲和吴世农(2002)以及穆启国、吴冲锋和刘海龙(2004)等分析了中国股市买卖价差的变化模式。本文在这些研究的基础上,采用hs模型实证分析了上海股票市场的买卖价差成分,给出了估计的交易价差,并且研究了其与报价价差和roll买卖价差的估计之间的相关性。本文与多内其它相关研究的不同之处在于,采用1

13、分钟内的分笔成交数据,根据每分钟内的累积符号交易量构造出交易指示变量,以此估计hs模型得到交易价差的估计和买卖价差个成分的分解结果。二、理论模型买卖价差成份的分解主要是基于资产价格的统计模型,一般包括协方差模型和交易指标模型两种。1协方差模型roll(1984)最早在有效市场假设下描述了买卖价差,根据观测交易价格的序列协方差性质估计(实现的)买卖价差。roll模型将买卖价差表示为股票收益率一阶自协方差相反数的算术平方根,即,其中s为股票的买卖价差,为t期股票价格的对数。为t期的股票(对数)收益率。roll模型虽然计算简单,但其在实证上回遇到收益正相关的困难。此后,choi,salandro和s

14、hastri(1988)和stoll(1989)等扩展了roll模型分别考虑的交易相关和价格变化量对买卖价差的影响。由于这类模型不是本文考虑的重点,因此不再详述。2交易指示模型设为t时刻的交易价格,为交易价格的买卖交易指示变量。如果交易由买方发起,且发生在报价中点以上,则=1;如果交易由卖方发起,且发生在报价中点以下,则=-1;如果交易发生在报价中点,则=0。根据逆选择信息成本模型和存货成本理论,hs给出了买卖价差成分的一般模型 (1)其中为随机误差项,表示买卖价差的逆选择信息成本,表示买卖价差的存货持有成本。s可以根据样本数据估计,称为交易价差。这是一个含有内嵌约束的非线性方程,唯一的决定因

15、素是交易指示变量。方程(1)给出了交易价差s的估计,以及报价对交易的总调整。它是买卖价差成分的一般模型,包含了序列协方差模型和其它特殊的交易指示变量模型。但是,这个模型没有考虑到交易概率的影响,结果是模型不能区分存货持有成本和逆选择成本。在已知的情况下,t-1时刻交易指示变量的条件期望可以表示为 (2)其中是t时刻的交易指示变量与t-1时刻的交易指示变量相反的概率。如果0.5,那么就需要对方程(1)进行调整,以解释包含在t-2时刻交易中的预测信息。最后得到的买卖价差成分分解模型为 (3)等式右边的倒数第二项是对中信息的调整。根据方程(3),我们可以得到买卖价差成分的分解。三、研究设计1数据及其

16、描述统计本文选择上证50成份指数的成分股票作为样本股票,样本数据来源于分析家证券分析系统的分笔交易数据。由于高频数据的数据量较大,我们选定样本期为2005年9月7日,该交易日不在上市公司报告公布期内,股票价格的波动不会受到重大事件的影响,只需考虑买卖价差对股票价格波动的作用。同时,为了剔除交易制度对价格波动的影响,我们剔除了集合竞价交易。为了避免交易的序列相关,交易数据的统计频率设定为1分钟。这样,一个交易日内共有240个交易区间,其中起始时刻(即0时刻)为9:30:00,0时刻的报价数据为第一个交易区间内的第一笔交易,终止时刻为14:29:59。由于样本股票600643的卖出报价缺失,因此也

17、将其剔除。所以,样本数据包含了49个样本股票在240个时点上的交易数据。实证分析涉及的变量见表1中的定义。对样本数据的描述统计包括交易价格、收益率、买卖价差和交易量4个变量。 限于篇幅,这里没有列出详细结果。在整个样本期内,样本股票之间的平均价格有较大的差异,从最低的2.46到最高的50.26,但是各股票之间的平均收益率则变化不大,最低和最高收益率的差异只有0.000312。平均交易量的均值约为492.88,且在样本股之间也存在很大的差异,变动的幅度达到了2172手之多,从一定程度上反映了样本股票在交易活跃程度上的差异。绝大多数样本股的平均报价价差在0.01附近,只有一只股票的平均买卖价差达到

18、了0.0825,表面上来看,各个样本股的交易成本差异不大。表1 变量定义表变量名定义符号买入报价第t分钟内最后一笔交易的最高买入价,即买一价卖出报价第t分钟内最后一笔交易的最低卖出价,即卖一价报价价差第t分钟的卖出报价和买入报价之差=-交易价格第t分钟内最后一笔交易的成交价格收益率相邻时段交易价格的对数变化符号交易量第t分钟内累积的买入交易量和卖出交易量之差交易指示变量表示第t分钟内买卖力量对比的强弱交易量第t分钟内所有交易的累积交易量2估计方法对于一般方程(1)的估计可以选择常用的最大似然估计或最小二乘估计,但是这两种估计方法在很大程度上依赖于分布假设,因此,我们选择广义矩(gmm)方法,它

19、对参数分布假设的要求较弱。当考虑了交易反转概率以后,可以用gmm估计方程(2)和(3)的联立方程系统,但是由于变量之间的相关性,可能无法得出参数估计结果。因此,我们分别用gmm估计这两个方程中的参数。首先,估计方程(2),得到反转概率的估计,并计算的条件期望值,记为;然后,用代替方程(3)中的相应项,有 (4)估计方程(4)就可以得出交易价差s和买卖价差的三个成份,和1-的估计。四、实证结果1. 一般模型的估计由于我国股票市场没有做事商制度,买卖价差中也就不应该包含存货持有成本这部分,则方程(1)中的=。表2中列出了各模型参数估计的平均值,方程(1)给出了指令处理成本1-和逆选择成本的估计以及

20、交易价差s(假定不变的相对价差)的估计。这里假设交易的条件概率=0.5。从回归结果中可以看出,交易价差在0.025%到0.138%之间变化,且均在5%的水平下显著。交易价差的截面均值约为0.065%,略高于中位数0.061%,说明可能存在少数极大的估计,实际上确实有两个交易价差的估计值大于0.1%。反映了逆选择成本和存货持有成本(这里假设为0)占半交易价差的比例,变动范围从最低的4.58%到最高的99.85%,且对84%的样本股而言在5%的水平下显著,平均水平约为70.93%。交易价差余下的部分是指令处理成分,变动范围对应为0.15%到95.42%,但是只对不到37%的样本股在5%的水平下显著

21、,平均的指令处理成分为29.07%,这与大多数的模型假设一致,即逆选择信息是买卖价差中较大的成份。需要说明的是,估计逆选择成本和存货持有成本()的思想基础在于报价变化对交易的反应。如果在同一报价下有很多交易发生,那么估计的逆选择成本和存货持有成本将会很小。如果交易聚集在买卖报价处,那么较低的估计可能是谬误的,因为大笔交易被分开执行,或者是由于买卖程序使得几笔交易在不变的买卖报价下发生。表2 模型参数估计结果参数方程(1)方程(2)方程(4)(=0)方程(4)0.000646(0.0000376)0.7093(0.0341)1-0.2907(0.0341)0.4490(0.0059)0.4514

22、(0.0406)0.4022(0.0352)0.4862(0.0304)1-0.1102(0.0149)0.1116(0.0149)注:括号内的数字为标准误差。2. 基于交易相关的买卖价差分解这里,我们关心的是买卖价差中逆选择信息成本和指令处理成本的分解(假设=0),而不是买卖价差的估计,因此我们用报价价差代替方程(4)中的买卖价差,即在参数空间中不含交易价差。在实证分析中,我们采用两步估计的方法得到需要估计的参数和1-的估计结果。对方程(2)和(4)我们选用panel数据模型进行估计,通过模型估计结果的比较,最后确定在方程(2)中包含状态和时间固定效应,在方程(4)中不包含状态和时间固定效应

23、。交易反转概率的估计值介于0.35和0.55之间,且都是统计显著的(p值几乎为0)。的平均值为0.4490,显著地小于0.5(p值几乎为0),这意味着的估计可能小于0,从各股票的估计结果来看,对应0.5,确实存在负的值。逆选择成本的均值为0.4514,且在-0.19和1.13之间变化,且有2/3的估计值在5%的水平下显著。指令处理成本的估计仍然很小,平均只有0.1102,比前面的两部分解0.291低得多,且只有1/3的估计值在5%的水下显著。这里出现了大于1或小于0的交易成本估计结果,表面上看来是不合理的,但我们可以把这看成是对两种交易成本成分的力量强弱的对比。小于0的估计值说明该项成本很小,

24、而另一成分所占的比重就相应地较大。比较奇怪的是,如果我们同时估计逆选择成本和指令处理成本1-时,二者之和等于1的统计检验是显著的,即还存在一部分没有解释的买卖价差的成分,这部分是否是我们认为不存在的存货持有成本? 如果我们取消=0的假设,重新估计方程(4),发现平均的+约为0.8884,这与方程(1)式中逆选择成本的估计非常接近。其中的均值约为0.4022,变化不大,而且这时的指令处理成本1-(+)平均为0.1116,和前面的估计相比几乎没有变化。虽然我国股市没有做市商制度,但这些结果似乎说明可以把没有估计出的买卖价差成分看成是一种指令持续成分。实际上,负的估计和小于0.5的值,说明买卖价差中

25、的指令持续成分强于逆选择成分。最后,我们简单分析了买卖价差成分与交易规模和交易价格之间的联系。根据股票交易价格和交易量的特征,分别把样本股票分成高、中、低三组。其中,平均交易量低于200手的为低交易量组,介于200500手的为中间交易量组,高于500手的为高交易量组;平均交易价格低于5元的为低价组,介于510元之间的为中间价组,大于10元的为高价组。表3列出了不同分组下逆选择成本的平均值。从这些统计结果中可以看出,无论哪种分组,逆选择成本都是先增加,后下降,且在高统计组的值最小,这在一定程度上说明了高价股或高交易量的股票信息不对称的程度最小,而低交易量或低价股则次之。表3 逆选择成本的分组统计

26、交易量交易价格低中高低中高方程(1)0.20340.26550.24050.28120.34470.08336方程(4)0.13620.19020.12500.16810.24070.0426样本容量16171620236五、结 论本文采用hs模型对上证50指数成分股票的买卖价差成分进行分解,该模型最大的优点在于它是关于买卖价差成分的一般模型。同时,为了避免一笔交易被分开执行所造成的交易相关,我们选取每分钟的分笔交易数据来估计模型,分别使用了gmm和panel数据模型估计了交易价差、交易反转概率、逆选择成本和指令执行成本。实证分析的结果表明,上海股市平均的交易价差约为0.065%,且在交易无关

27、的假设下,逆选择成本达到71%,高于雷觉铭,曾勇(2006)对上证180指数逆选择成本的估计62%,但是,在考虑了交易相关之后,逆选择成本的估计明显下降,平均只有45.14%,而指令处理成本也有所下降。一个奇怪的现象是,在考虑交易相关的情况下,买卖价差在分解成两部分之后还有约43%的成分没有解释。如果重新考虑该模型的三部分解,我们发现买卖价差的指令处理成本、逆选择成本和指令持续成本分别为11.16%,40.22%和48.62%。最后,我们还发现高价股或高交易量股票的逆选择成本相对较小。参考文献1 choi, j. y., d. salandro, and k. shastri (1988),

28、on the estimation of bid-ask spreads: theory andevidence j, journal of financial and quantitative analysis, 23, 219230.2 george, t. j., g. kaul, and m. nimalendran (1991), estimation of the bid-ask spreads and itscomponents: a new approach j, review of financial studies, 4, 623656.3 glosten, l. r., and l. e. harris (1988), estimating the components of the bid-ask spread j, journal of financial economics, 21,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论